Excitement is in the air this fall as we celebrate our all-time-high enrollment of 3,172 undergraduates. This has us charged up for two reasons:

1) Recruitment and retention efforts are paying off!
2) Recruitment and retention efforts are paying off AND putting us on solid footing for reaching the goals of the University Engineering Initiative Act (UEIA) where, by 2013, we are to have increased our graduates by 163 students. Enrollment and graduation numbers are just two of the metrics we’ll be measuring for the Kansas Department of Commerce. In this fall 2012 issue of Impact, you’ll find a preliminary rendering of our planned new welcome center. Be sure, also, to check out the features on our new a top-50 research institution by 2025.

Research highlights this issue include funding successes of our CIS cybersecurity team, as well as critical land management issues stemming from the DOD-funded research of Stacy and Shawn Hutchinson. This too is linked to recruitment and retention.

As we grow, the president and state are committed to support required facility upgrades and expansions to sustain the growth of our student body and the necessary increase in faculty. Adding to and retaining the talented faculty we now have will be key to our progress in meeting the objectives of K-State 2025 and the UEIA.

Last issue we offered a “sneak peak” at an early sketch of a planned new building, and this time we highlight the K-State engineering education experience with words and images.
Cybersecurity projects awarded more than $3M in funding

Cybersecurity researchers in the College of Engineering are securing their status as leaders in their field thanks to a strong summer of project funding.

In August the National Science Foundation awarded more than $3 million in funding to support three projects in the department of computing and information sciences. The projects will help protect digital information and boost the nation’s cybersecurity workforce.

“This was an exceptional month for the computing and information sciences department,” said John English, dean of the College of Engineering. “Our cybersecurity faculty are top-notch in their field. Their recognition as such creates unprecedented opportunities for our cybersecurity programs and cements Kansas State University’s reputation as a national leader in digital security.”

As a leader, the university—through its research projects—will advance federal, medical and public cybersecurity networks, said Gurdip Singh, professor and head of the computing and information sciences department.

“It is very exciting to have the National Science Foundation recognize the importance of several Kansas State University projects that will benefit the U.S.,” Singh said. “This is a huge investment in many of our talented faculty members who are addressing the security and vulnerability challenges facing the nation’s various cyber infrastructures.”

The projects are as follows:

- More than $2.37 million was awarded to a project by Xinming “Simon” Ou, associate professor; Eugene Vasserman, assistant professor; John Hatcliff, university distinguished professor; Scott DeLoach, professor; and Singh. The project provides scholarships to university students who pursue studies and career paths in cybersecurity and information assurance. Postgraduation, scholarship recipients will intern for government security positions.
- More than $482,000 in funding was issued to a project by David Schmidt, university distinguished professor and Lloyd T. Smith creativity chair in engineering, for a project that applies parsing and static-analysis techniques for detecting errors and vulnerabilities in online web server scripts that dynamically generate web pages. The web pages themselves collect sensitive online data from users. Web server scripts are notorious for generating faulty web pages that leak data, Schmidt said. The project is focused on improving the quality of the scripts and the security of web-based data processing.

Training cybersecurity professionals

Millions of people depend on the Internet every day and cyber criminals are counting on that. To help counter the threat, the National Science Foundation has awarded $2.3 million to the College of Engineering department of computing and information sciences to provide scholarships to qualified students interested in becoming cybersecurity and information assurance professionals.

According to Xinming “Simon” Ou, CIS associate professor, many systems society uses every day—smartphones, online companies, media communications, transportation, electricity and hospital systems—are highly dependent on a very fragile cyber infrastructure that, if hacked into, could be disastrous and shake people’s sense of security like a cyber version of Pearl Harbor or 9/11.

Read more at www.k-state.edu/media/newsreleases/sept12/cybersecsch91812.html.

Keeping medical devices secure

What if you could shut down several emergency rooms simultaneously without leaving your own home? How about “hacking” a pacemaker and reprogramming it to cause a heart attack?

Although these could be scenes from an espionage film, they are also some of the plausible scenarios that College of Engineering cybersecurity experts are working to prevent.

Read more at www.k-state.edu/media/newsreleases/sept12/medhack90512.html.

Taming the virtual Wild West

Nearly undetectable, cyber criminals have turned the Internet into a virtual Wild West. Helping to save the day is College of Engineering cybersecurity expert Xinming “Simon” Ou.

Although he may not be John Wayne, Ou, associate professor of computing and information sciences, is developing hacker-detection tools in collaboration with Hewlett-Packard Co., or HP, as part of the HP Labs Innovation Research Program. Kansas State University is one of only 46 universities in the world to receive the 2012 award.

“If a burglar breaks into your house, you can see them and call the police, but if a hacker taps into your computer, how do you know and who would you call?” Ou said.

Read more at www.k-state.edu/media/newsreleases/sept12/hpaward92512.html.
Robotics teams takes title

Kansas State University’s student robotics team (below) has clinched its sixth consecutive championship in the American Society of Biological and Agricultural Engineers’ international student robotics competition held this summer in Dallas, Texas. K-State has never lost the competition.

The student robotics competition is aimed at designing solutions to common agricultural issues. Students build a system to automate the task of feeding a herd of cattle in a feedlot in a time-efficient manner. The team had to program a robot that could disperse different, prescribed amounts of feed—pellets—to 24 feeding pens on an 8-by-8-foot board. Points were awarded for speed, accuracy, and elegance of design.

Top three once again!

Small tractors led to big success for the Powercat Tractors Quarter-Scale Design Team when members of the A Team (above) took second place in the American Society of Agricultural and Biological Engineers’ 15th annual International Quarter-Scale Tractor Student Design Competition May 31–June 4 in Peoria, Ill. It was the 13th time in the past 14 years that the team has finished in the top three at the competition.

When Erin Vetter approached Bob Gregory about an internship, he suggested a three-day work week.

After all, his company, Turner Uni-Drive, a small machine shop that designs and manufactures industrial gearboxes, was a harsh, dirty environment and he wasn’t sure how this petite young lady would hold up under those conditions. Not to mention, the company had never had an intern and he wasn’t quite sure what to do with one.

As it turns out, Gregory changed his mind after the end of Vetter’s first shift—not just about her ability to do the job, but also about the value an intern could bring to his company. He put her on full time.

Vetter, now a senior in industrial engineering, knew the importance an internship could make on her future. Because she had come to the major late, she felt it especially important she secure an internship that could translate into lasting changes that could positively influence your bottom line.”

“Students can bring new ideas and an eagerness to contribute to your workplace which could translate into lasting changes that can positively influence your bottom line.”

“Really, I’m surprised at how well it worked out. It was a good move for us.”

And that she did.

Gregory started Vetter with operating the machines, loading and unloading parts. Though manual work, it required a good understanding of the machine’s operation as it utilized multiple tools and anywhere from 10 to 50 offsets.

Vetter was a quick learner. Soon she graduated to setup and eventually delved into programming the machine. But Vetter wanted to do more. She observed employees frequently searching multiple workstations for the tools they needed.

She suggested a time study which eventually led to the development of a tool list for each machine.

“After all, his company, Turner Uni-Drive, a small machine shop that designs and manufactures industrial gearboxes, was a harsh, dirty environment and he wasn’t sure how this petite young lady would hold up under those conditions. Not to mention, the company had never had an intern and he wasn’t quite sure what to do with one.”

As it turns out, Gregory changed his mind after the end of Vetter’s first shift—not just about her ability to do the job, but also about the value an intern could bring to his company. He put her on full time.

Vetter, now a senior in industrial engineering, knew the importance an internship could make on her future. Because she had come to the major late, she felt it especially important she secure an internship that could translate into lasting changes that could positively influence your bottom line.”

“Really, I’m surprised at how well it worked out. It was a good move for us.”

And that she did.

Gregory started Vetter with operating the machines, loading and unloading parts. Though manual work, it required a good understanding of the machine’s operation as it utilized multiple tools and anywhere from 10 to 50 offsets.

Vetter was a quick learner. Soon she graduated to setup and eventually delved into programming the machine. But Vetter wanted to do more. She observed employees frequently searching multiple workstations for the tools they needed.

She suggested a time study which eventually led to the development of a tool list for each machine.

“A proven asset

Photo courtesy of Jed Barker

Fountain wars—battle to a second-place finish

The K-State fountain wars competition (below) team finished second in the competition at the American Society of Agricultural and Biological Engineers international meeting this summer in Dallas, Texas.

Fountain wars is a hands-on, real-time design competition where students design and model a fountain to complete technical tasks. The model is then built and tested under time limits at the competition, and a written report and oral presentation must be provided. The design also must be aesthetically pleasing.

Three championships

A K-State student engineering competition team (above) won three of six first-place awards in the ASCE Charles Pan-Kow Foundation Architectural Engineering Student Competition in Omaha, Neb., hosted by the Architectural Engineering Institute of the American Society of Civil Engineers.

K-State was the first and only school to date to place finalists in all five categories and win the two top overall awards. The competition challenged students to design issues for a new government office building in Omaha. The teams had to assemble design development packages that addressed the design and construction challenges of the high-performance federal building with a high level of security requirements.

Photo courtesy of Jed Barker

When Erin Vetter approached Bob Gregory about an internship, he suggested a three-day work week.

After all, his company, Turner Uni-Drive, a small machine shop that designs and manufactures industrial gearboxes, was a harsh, dirty environment and he wasn’t sure how this petite young lady would hold up under those conditions. Not to mention, the company had never had an intern and he wasn’t quite sure what to do with one.

As it turns out, Gregory changed his mind after the end of Vetter’s first shift—not just about her ability to do the job, but also about the value an intern could bring to his company. He put her on full time.

Vetter, now a senior in industrial engineering, knew the importance an internship could make on her future. Because she had come to the major late, she felt it especially important she secure one during the summer of 2012.

She had just completed Intro to Manufacturing Processes where she’d learned to use a computer numerical control (CNC) machine. It was a class she enjoyed. A friend mentioned that her dad’s company used CNC machines. That friend was Gregory’s daughter. Vetter decided to give him a call.

Gregory knew Vetter through his daughter. He had watched her grow up playing soccer in the Kansas City area. From that he knew she was persistent and a hard worker. After first trying to discourage her, he relented and told her to come in.

“I knew that if I convinced him to give me a chance, I would need to prove to him every day that I could do the work,” Vetter said. “Erin brought a fresh outlook to an old process and made a big difference in a short amount of time,” he said. “She was eager to pitch in at any level and worked herself into increasing roles of responsibility.

“So much so that Gregory is planning to offer internships in the future and encourages other small businesses to do the same.

“Internships are certainly a great learning opportunity for the student, but they can also be of real benefit to the company,” he said. “Students can bring new ideas and an eagerness to contribute to your workplace which could translate into lasting changes that can positively influence your bottom line.”

“Now more than ever, internship experience is a priority for the college,” he said. “Oftentimes internships can turn into full-time employment, which is one of the UEIA goals for the state.”

Kansas companies or businesses interested in posting internships, can contact Debbie Owens, Career and Employment Services, 785-532-1681 or dowens@ksu.edu. She will provide access to the CES account which will allow clients to post jobs, manage recruitment efforts, schedule on-campus interviews, review resumes, e-mail potential candidates and register for career fairs.

—Tina Long, IMSE project coordinator
Renovated CHE laboratories celebrated

The department of chemical engineering hosted an open house on Sept. 15 to celebrate the completion of its newly renovated laboratories.

The laboratories, on the second floor of Durland Hall, were updated for safety and to enable modern chemical engineering research. With changes in safety standards and advancements in engineering research, the facilities were not adequate for current and future activities. They now allow for specialized research rarely done in university settings, said James Edgar, professor of chemical engineering and department head.

“These renovated laboratories were designed to encourage greater collaboration between different faculty and their student research groups,” Edgar said. “The improved facilities and the greater ability to collaborate will make the department more competitive when applying for research grants.”

The renovations involved nine laboratories and 10 student offices that were combined to create nine new laboratories. The more spacious laboratories contain 14 fume hoods and a new dedicated air-conditioning system that will alleviate chronic problems in maintaining an appropriate temperature and humidity level.

The renovations cost $2.4 million and were done with a $1.6 million grant from the National Science Foundation, made under the American Recovery and Reinvestment Act of 2009, and $800,000 from the university, and corporate and individual donors.

Left to right: PhV Ugorowski, MNE staff; Rep. Tim Huelskamp; and Douglas McGregor, MNE professor.

Charged for the future: Burns & McDonnell Smart Grid Lab

A ribbon-cutting ceremony and dedication for the new Burns & McDonnell Smart Grid Lab took place Oct. 23 in the department of electrical and computer engineering.

The lab was made possible through a donation from Burns & McDonnell, the international engineering, architecture and consulting company based in Kansas City, Mo., and from the company’s many employees who are Kansas State University alumni. In addition, several companies in the power industry have or are in the process of making vital equipment and furnishing donations to the lab.

Noel Schulz, LeRoy C. and Aileen Paslay Professor of Electrical and Computer Engineering, will be the lab’s director. It will be home to her research in smart grid technologies, power systems, energy conversion, application of computer programs to power engineering, application of intelligent systems to engineering problems and more.

Schulz, who is also the associate dean for research and director of the Engineering Experiment Station, played a major role in facilitating the lab as director of the university’s Electrical Power Affiliates Program—of which Burns & McDonnell is a founding member.

The Electrical Power Affiliates Program, or EPAP, an industrial consortium within the College of Engineering, recently added three new companies.

EPAP supports student and faculty activities through a partnership with companies in the electric power industry. Noel Schulz, the college’s associate dean for research and graduate programs, directs the program.

Financial support from the companies sponsors student travel to industry facilities, student presentations at conferences and research that connects to the needs of power affiliates members. The program also supports undergraduate and graduate student projects, and extends opportunities for internships and future employment opportunities in the power field. The program’s four founding companies are Burns & McDonnell, Nebraska Public Power District, Omaha Public Power District and Westar Energy.

Joining these companies at the executive level this fall was Kansas City Power & Light, or KCP&L, based in Kansas City, Mo. Joined at the member level was Schweitzer Engineering Laboratories, or SEL, based in Pullman, Wash., and SegoInc., based in Overland Park. For more information on the program, visit www.k-state.edu/epap.
Increased funding for scholarships is essential to reaching our UEIA goals. Efforts to recruit and retain a well-qualified student body, and see that group through to graduation, are enhanced tremendously by scholarship gifts.

Last spring, Warren, EE ’65, and Mary Lynn Staley, Elem Ed ’65, pictured above with scholarship recipients and Dean English at a Sept. 6 reception in the Rathbone Hall atrium, made a commitment of $1 million over the next 10 years, to establish the Warren and Mary Lynn Staley Engineering Excellence Scholarship.

This unrestricted scholarship gift for engineering students provided $100,000 for the 2012–2013 school year, where 50 students were awarded scholarships this fall from the Staleys’ commitment:

- Four students received Study Abroad funds of $1,000 each (with more to follow this spring).
- Twenty-one new transfer students received $1,000 for excellent academic performance on their transfer courses.
- Twenty-five continuing students received $1,250 to $1,500 for academic performance.

“We know you will leverage this investment in your education in the near future,” Mary Lynn Staley told the students during brief remarks at the gathering. “We love to back people who are good at what they do.”

“I am grateful for the scholarship I received,” said Natalie Truman, senior in civil engineering, and recipient of the Staley Scholarship this fall. “Scholarships helped me get where I am today, and it is so exciting to meet the Staleys in person.”

Truman interned with Cargill, the company from which Warren Staley retired as chairman and CEO in 2007, and has recently accepted a position with them after graduation.

The College of Engineering, in compliance with UEIA guidelines, will provide the Secretary of Commerce with an annual report on engineering expansion progress. The report, represented by a modified version at left, will include quantities on core standard outcomes and may include additional metrics for each university’s individual engineering and strategic activities.

For more on the UEIA, visit www.engg.ksu.edu/ueia

Scholarship gifts—a spearhead for expansion

The College of Engineering is depicted in this screened-back, preliminary architectural rendering. Meeting the demands of the UEIA, which will result in an increase in students and faculty, means an expansion in our facilities as well to ensure we have the classroom, laboratory and office space conducive to learning and active participation in engineering-based extracurricular activities.
Managing military maneuver areas

“We put the right information into the right hands for timely management decisions.”

This was the summation of Stacy Hutchinson, associate professor of biological and agricultural engineering, concerning the joint, DOD-funded project she and her husband, Shawn Hutchinson, associate professor of geography, are currently engaged in at Fort Riley.

The U.S. Army Integrated Training Area Management (ITAM) program is charged with managing maneuver areas at Fort Riley to establish procedures for optimum, sustainable use of training lands by implementing a uniform land management program that inventories and monitors land conditions.

The Hutchinsons’ grant chiefly involves the range and training land assessment (RTLA) subprogram with the responsibility of monitoring natural resources within training lands and identifying when, and where, a variety of potential environmental or safety issues might prevent their use by military units.

Shawn’s area of expertise—satellite remote sensing and geographic information systems (GIS)—comes into play with his development of a digital mapping web application which automates spatial data acquisition and synthesis processes needed for monitoring. That mapping system, viewable through a simple Internet browser, allows military commanders and land managers to get a real- or near-real-time view of military training land conditions to improve training plans and prioritize needed rehabilitation efforts.

Stacy’s specialties of hydrology and erosion prevention have helped to identify and shape the critical landscape metrics being evaluated and mapped. Depending on what is being evaluated, a snapshot of conditions for those metrics is produced and analyzed in time intervals ranging from minutes to one year.

“We are able to integrate our knowledge of engineering principles, ecology, hydrology and geographic information science (GIScience) and apply them to the study of land conditions and vegetative health. This provides Fort Riley with important information about the condition of their training lands when they need it—as opposed to waiting for an end-of-year report,” she said.

An example within the monitoring program implemented by the Hutchinsons includes the study of current vegetation condition and trends. Presence of healthy vegetation and continuous vegetative cover is key to training land availability and access, as it helps reduce unwanted soil erosion, prevents formation of dangerous gullies, and provides natural cover for soldiers and vehicles during training exercises.

Under the Fort Riley RTLA program, vegetation health is routinely monitored by collecting and analyzing time-series vegetation “greenness” images acquired by satellite-track seasonal vegetation development, identifying normal and extreme vegetation conditions, and evaluating current vegetation conditions versus long-term average conditions. The “near-real-time” nature of their effort is reflected in that this assessment takes place every 16 days.

“Using GIS as the information technology backbone of our monitoring effort allows us to automate most aspects of a typical data acquisition, modeling and analysis, and visualization workflow,” Shawn said. “This decreases the time needed to convert raw data to valuable information for decision making.”

“Using GIS as the information technology backbone of our monitoring effort allows us to automate most aspects of a typical data acquisition, modeling and analysis, and visualization workflow,” Shawn said. “This decreases the time needed to convert raw data to valuable information for decision making.”

Similar to Fort Riley, many of the same analyses are also performed for the nearby Konza Prairie Biological Station.

“We also monitor Konza, where no military activity takes place, as a comparison study site,” Stacy said. “This helps us better assess the impacts of military training on the land.”

Both Stacy and Shawn are former Army officers who spent much of their military careers at Fort Bragg, N.C., and Fort Riley, respectively. They bring a measure of “insider” insight into the unique informational needs of the military and how principles of environmental sustainability can work to the Army’s operational advantage.
The Black & Veatch engineering and construction firm, Overland Park, Kan., through its Building a World of Difference Foundation, has awarded Kansas State University a $200,000 grant to help develop solar-powered charging stations for electric and hybrid vehicles.

“We are very grateful to Black & Veatch for sharing our vision, and we are extremely excited about this corporate partnership and the research opportunities it will bring,” said project leader Larry Erickson, professor of chemical engineering.

The project will allow researchers to better understand technical, social, environmental and economic issues surrounding plug-in vehicles. Possible research topics include environmental impact, consumer attitudes and distribution of electricity.

Forum promotes retention

Studying to become an engineer—is it all worth it?

This was the basic question tackled by members of the Dean’s Advisory Council in a retention-based activity for freshman and sophomore students Oct. 26 in Fiedler Auditorium.

Mike Manley, Sue Barsamian, Steve Kirchhoff, Ray Dempsey, Jr. and Mark Hutton presented brief comments on their chosen career paths. Dean John English then moderated a question-and-answer period between the panel and students.

Comments from the panel—

“On the other side of the ‘boot camp’ of engineering school is a lifetime of opportunity to make a difference.”

—Barsamian

“Your engineering degree is a gateway. Often in big businesses, engineers run the company. Most of the top 20 people at ExxonMobil are engineers.”

—Kirchhoff

“Engineers get to help change the world.”

—Manley

“Today’s advancements in technology, so natural and normal to you, were all created by engineers—they create the future and then get to live in it.”

—Dempsey

“Engineering is the DNA of good ideas. I challenge you to find something in life that isn’t touched by an engineer.”

—Hutton
Don Sutaria (M.S. IE) is founder and president of CareerQuest, located in New Jersey and New York. Also known as Career Doctor Don, he is a consultant to individuals and organizations, offering executive coaching and career management services. He is the author of Career and Life Counseling from the Heart: (Your Career Is a Pathway to Your Soul) and has been quoted in numerous publications including The Wall Street Journal, New York Times, Workforce, and Fortune. don@careerquestcentral.com

David Karnowski (CE), was selected by the ASCE Health 7 Board of Governors to receive the 2012 Region 7 Practitioner Advisor Award for his dedication to the advancement of the civil engineering profession through involvement with the K-State ASCE student chapter.

In 1991, Simon O. Terry (IE), Dallas, Texas, has been honored with America’s Top Diversity Champions award for 2012 by Diversity Business.com. The Top Champions award recognizes successful leaders who have distinguished themselves in the marketplace and communities by setting quantifiable, real-world results on important diversity initiatives. Terry was recently promoted to corporate director of diversity affairs for Austin Commercial, one of three construction/construction management companies under parent company Austin Industries headquartered in Dallas.

April Eisenhauer (ARE, M.S. ARE), Dallas, Texas, has been named to the 2012 “40 under 40” list by Consulting-Specifying Engineer magazine. This edition is given to 40 building industry professionals age 40 and younger who stand out in all aspects of their lives. She is a mechanical engineer with cord Partners Professional Consulting Engineers, Dallas.

Robert Eldon “Bob” Butler (IE) died Aug. 7, 2012, in Dallas, Texas. Before retirement, he spent 27 years with Texas Instruments in facilities management. He is survived by his wife, Daniel.

James Michael “Mike” Duncan (NE), died unexpectedly March 28, 2012. An M.D., Duncan served as Deputy Chief Medical Officer of the Space Life Sciences Directorate at the Johnson Space Center in Houston, Texas. He began his career at NASA in 1969, holding such positions as flight surgeon, deputy crew surgeon, lead surgeon, medical officer, and chief of space medicine. Duncan led the NASA team that traveled to Chile in September 2010 in support of the rescue of 33 trapped miners. For his efforts, he and the team were awarded the NASA Exceptional Achievement Medal and the 2011 Samuel J. Heyman, Service to America, National Security and International Affairs Medal. Duncan presented an Eyestone Lecture for the College of Engineering on the miners’ rescue effort in the fall of 2011, and was to have joined the Dean’s Advisory Council this fall. He is survived by his wife of 35 years, Candace “Candy” Hart Duncan. The James Michael Duncan Engineering Scholarship Fund has been established by the family, and contributions may be sent to the KSU Foundation, 2332 Anderson Ave., Suite 500, Manhattan, KS 66502.

Stephanie Weissemer Thompson (AEE) passed away suddenly May 2, 2012, in Aurora, Colo. She is survived by her husband, Brian Thompson; and son, Scott Riley Thompson, age 6. After graduation, she had attained her professional engineer license in architectural engineering and was employed at Merrick & Company as an electrical engineer. She was certified as a LEED AP; building design and construction; and was a certified energy manager.

Robert Eldon “Bob” Butler (IE), Dallas, Texas. Before retirement, he spent 27 years with Texas Instruments in facilities management. He is survived by his wife, Daniel.

James Michael “Mike” Duncan (NE), died unexpectedly March 28, 2012. An M.D., Duncan served as Deputy Chief Medical Officer of the Space Life Sciences Directorate at the Johnson Space Center in Houston, Texas. He began his career at NASA in 1969, holding such positions as flight surgeon, deputy crew surgeon, lead surgeon, medical officer, and chief of space medicine. Duncan led the NASA team that traveled to Chile in September 2010 in support of the rescue of 33 trapped miners. For his efforts, he and the team were awarded the NASA Exceptional Achievement Medal and the 2011 Samuel J. Heyman, Service to America, National Security and International Affairs Medal. Duncan presented an Eyestone Lecture for the College of Engineering on the miners’ rescue effort in the fall of 2011, and was to have joined the Dean’s Advisory Council this fall. He is survived by his wife of 35 years, Candace “Candy” Hart Duncan. The James Michael Duncan Engineering Scholarship Fund has been established by the family, and contributions may be sent to the KSU Foundation, 2332 Anderson Ave., Suite 500, Manhattan, KS 66502.

Stephanie Weissemer Thompson (AEE) passed away suddenly May 2, 2012, in Aurora, Colo. She is survived by her husband, Brian Thompson; and son, Scott Riley Thompson, age 6. After graduation, she had attained her professional engineer license in architectural engineering and was employed at Merrick & Company as an electrical engineer. She was certified as a LEED AP; building design and construction; and was a certified energy manager.

Robert Eldon “Bob” Butler (IE), Dallas, Texas. Before retirement, he spent 27 years with Texas Instruments in facilities management. He is survived by his wife, Daniel.

James Michael “Mike” Duncan (NE), died unexpectedly March 28, 2012. An M.D., Duncan served as Deputy Chief Medical Officer of the Space Life Sciences Directorate at the Johnson Space Center in Houston, Texas. He began his career at NASA in 1969, holding such positions as flight surgeon, deputy crew surgeon, lead surgeon, medical officer, and chief of space medicine. Duncan led the NASA team that traveled to Chile in September 2010 in support of the rescue of 33 trapped miners. For his efforts, he and the team were awarded the NASA Exceptional Achievement Medal and the 2011 Samuel J. Heyman, Service to America, National Security and International Affairs Medal. Duncan presented an Eyestone Lecture for the College of Engineering on the miners’ rescue effort in the fall of 2011, and was to have joined the Dean’s Advisory Council this fall. He is survived by his wife of 35 years, Candace “Candy” Hart Duncan. The James Michael Duncan Engineering Scholarship Fund has been established by the family, and contributions may be sent to the KSU Foundation, 2332 Anderson Ave., Suite 500, Manhattan, KS 66502.

Stephanie Weissemer Thompson (AEE) passed away suddenly May 2, 2012, in Aurora, Colo. She is survived by her husband, Brian Thompson; and son, Scott Riley Thompson, age 6. After graduation, she had attained her professional engineer license in architectural engineering and was employed at Merrick & Company as an electrical engineer. She was certified as a LEED AP; building design and construction; and was a certified energy manager.
Notice of nondiscrimination

Kansas State University is committed to nondiscrimination on the basis of race, sex, national origin, disability, religion, age, sexual orientation, or other nonmerit reasons, in admissions, educational programs or activities and employment (including employment of disabled veterans and veterans of the Vietnam Era), as required by applicable laws and regulations. Responsibility for coordination of compliance efforts and receipt of inquiries concerning Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, the Age Discrimination Act of 1975, and the Americans With Disabilities Act of 1990, has been delegated to Roberta Maldonado-Franzen, Interim Director of Affirmative Action, Kansas State University, 214 Anderson Hall, Manhattan, KS 66506-0124, (Phone) 785-532-6220; (TTY) 785-532-4807.

Faculty awards and honors

2012 recipients

Left to right: David L. Soldan, ECE professor, Bob and Lila Snell Distinguished Career Award for Excellence in Undergraduate Teaching; J. Garth Thompson, MNE professor, Clair A. Mauch Steel Ring Advisor of the Year; Naiqian Zhang, BAE professor, Myers-Alford Memorial Teaching Award; Keith L. Hohn, CHE professor, James L. Hollis Memorial Award for Excellence in Undergraduate Teaching; Medhat M. Morcos, ECE professor, Charles H. Scholer Faculty Award; Anil Pahwa, ECE professor, Frankenhoff Outstanding Research Award; and Robert W. Stokes, CE professor, Larry E. and Laurel Erickson Public Service Award.