Honomicichls share profession, passion for K-State

Honored, Humbled, Thrilled.
These were the words Diane (Linster) Honomicich, CE '86, and Kevin Honomicich, CE '86, chose to express their reaction to being named recipients of the 2002 College of Engineering Distinguished Service Award (DSA). The first couple, and for Diane the first woman, to be so recognized by the college, the Honomicichs were formally honored at commencement ceremonies last spring.

"Our being recognized as a couple certainly has significance," Kevin said. "A dual-engineer family is very different than what may have been considered typical during our parents' era. We consider ourselves fortunate to be able to share our profession, memories of our engineering classes, and our passion for Kansas State University."

"I've never felt myself apart in my career due to my gender," said Diane. "But as the first woman DSA and part of the first couple, I believe I have a high standard to maintain for many years to come. I hope I can serve as an inspiration for future women engineers."

The DSA is awarded annually to a prominent person whose career has contributed notably to his or her profession. Less than 1% of the college's alumni are selected.

Kevin and Diane are both licensed professional engineers, and both earned master's degrees in civil engineering from the University of Kansas in 1999. Kevin is currently pursuing an MBA from KU.

He is the president of Beaugard-Honomichl & Company, Overland Park, a consulting firm he helped found. He is also a planning commissioner for DeSoto, Kan.

Diane is a project engineer for Black & Veatch, Kansas City, where she is responsible for the design of wastewater treatment plants throughout the Midwest.

"What has always impressed me about the Honomicichs," said Terry King, dean of the College of Engineering, "is that not only are they extremely successful in their professional lives, but they've carried that measure of success over to their private lives as well. They give so much back as a whole through their service to the university, to their profession, and to society."

The Honomicichs are members of the KSU Alumni Association, President's Club and Seaton Society, and are Ahearn Club donors of the Ahearn Athletic Scholarship Fund. Through private and corporate giving, they have provided scholarship support and gifts toward building and equipment funds for the College of Engineering.

In their private lives, they are foster puppy raisers for Kansas Specialty Dog Service, a guide and service dog organization. They are also active in their Overland Park church and assist in various other charitable organization projects.

Kevin is on the board of directors of the Kansas Consulting Engineers and serves on the K-State Department of Civil Engineering Advisory Council. He received the Professional Progress Award from the college in 2000.

Diane is active in recruiting at K-State for Black & Veatch and remains very involved with alumni activities of her K-State sorority membership in Kappa Delta. Kevin and Diane were both recently appointed to the KSU Foundation Board of Trustees.

continued on page 6

Seaton Society Banquet & Ball
see pages 4 and 5
This fall, the newly installed sculpture on the Capenol dome in Topka, Ad Astra, made a stopover on campus outside the Union, while on its eastward journey. I've always wondered what Kansas meant, after which the statue is named, intriguing: "Ad astra per aspera"—To the stars through difficulty.

And this year especially, in these times of budgetary challenges and fiscal difficulties, that motto seems to have a particular ring of truth and encouragement for us. Are these difficult times for Kansas State University and the College of Engineering? Undoubtedly. Will we rise to the challenge and in so doing move even closer to our goals and vision? Undoubtedly, as well.

This will mean finding new, effective ways to deliver our educational services. In the pages of this issue of Impact, you'll find an article on distance education—a successful offering where we are continually integrating the newest delivery methods to serve even more students better. There's a story about an internship program launched this past summer—exclusively set up for those having completed their freshman year of studies. In an effort to highlight the value of corporate giving, we've taken a look at Cargill and the broad opportunities its contributions have provided. Our research feature focuses on the field of biotechnology; proteins, an endeavor that allows chemical engineering students to study under cutting-edge leaders in this groundbreaking area.

Putting forth our product of an engineering education must be a process of evolution, not maintenance. In these times of financial crises, the status quo will no longer suffice. We must find new ways to do business.

Also featured in these pages are some of our most avid supporters—the College of Engineering Advisory Council, Hall of Fame Inductees, Professional Progress Award and Distinguished Service Award winners, and members of the Senate Society. Through their finances, talent, and time, these people are helping us to restructure our current revenues and point the way toward new income efficiencies. Historian Arnold Turner speaks of civilizations coming to birth and growth by "successfully responding to successive challenges." We can either view the budget situation as a difficulty or an opportunity. In the tradition of our Kansas ancestors, we're aiming for the stars.

Terry S. King, Dean

Protein-based biomaterials hold "tremendous potential"

Ask Steven Gehlke, department head of chemical engineering, to explain his research, and you're off and running on a complex topic. And while the "how" and the "wherefore" are likely to become muddled in the translation to plain English, the long-term potential of his work exhibits a clear and important relevance in many areas.

It's about molecules and polymers and proteins and clays and bacteria and gels. And when all is said and done, this study of biotechnology and bioengineering of protein-based biomaterials will matter in the worlds of medicine and agriculture, among others.

Gehlke's current work in this area is funded by a four-year NASA grant. He and co-principal investigator, Victor Connolly, Emory University, Atlanta, Ga., are creating synthetic DNA that when introduced into E. coli bacteria, reprograms it to produce a biosynthetic protein found on the human structural protein, elastin. While the bacteria have been grown on a larger scale, and the protein extracted and purified, it is studied and used in efforts to better understand structural and functional relationships in protein-based biomaterials.

"Why E. coli bacteria?" Gehlke asks, "Because it's a common intestinal bacteria found in most humans and animals, and is easy to grow." Gehlke said, "These strains are bred to be safe and are much harder than those found in tainted meat.

Think of it as competing a Chihuahua to a Rottweiler." The elastin-like protein extracted from the bacteria is similar to the main elastic component of human blood vessel walls. This material has strong potential use in tissue implants that help the body regenerate its original tissue, rather than trying to implant a synthetic material in the body to replace the original tissue. In principle, a new blood vessel could be manufactured by mixing the biosynthetic elastin with a patient's stem cells to form the blood tube needed, then implanting it into the patient where the cells can regenerate into the original vessel.

"This has tremendous potential application in vascular grafting and heart-by-pass surgery," Gehlke said. "Right now surgeons must transplant blood vessels from other parts of the body or use synthetic material."

The NASA focus of the research centers on the properties of the material—in strength, elasticity, and ability to sense and respond to its environment. Jeffrey Hambly, NASA Langley Research Center, Hampton, Va., who spent the summers of 2000 and 2001 at K-State working with Gehlke in his lab, explained NASA's interest in this way: "NASA mission in aeronautics and space require efficient, lightweight materials and structures. Living things have built-in capacity to sense changes in their environment, respond and adapt, and even repair themselves. Hence, biometric materials like the biosynthetic elastin could be used as sensors, actuators, or other components in spacecraft."

"Once we have manufactured the polynor," Gehlke said, "we could cut it into a solid material or gel and are able to perform tests. It needs to mimic natural tissue— if it's too soft, it will fail apart. If it's too strong, the cells won't grow properly. My Ph.D. students, Elder Oliveira and Sharon Hagan, and I have shown that details of the molecular structure affect the strength or mechanical performance of the material."

Gehlke is in his fifth year as department head, coming to K-State from the University of Cincinnati. He attributes his specialization in bioengineering to a life-long interest in chemistry and biology. Before beginning his graduate work at K-State in 1976, he couldn't decide between architecture and chemistry for a major. "I'd always liked to build things, and I'd always liked chemistry as well. My dad was a chemistry professor and suggested chemical engineering might be a good mix," he said.

While completing his master's degree and Ph.D. at the University of Minnesota, he began to get into areas of polymers and biotechnology. Later on a sabbatical at the University of Massachusetts in 1993 and 1994, he worked with David Tindall, the pioneer in the field of making protein polymers using genetic techniques. "I began to see that genetically engineered materials could eventually replace any tissue in the body," he said.

"On the agricultural side," Gehlke said, "plants too could be bioengineered to produce such proteins on a large scale. I've also submitted an NSF proposal with Mike Kanas and Karl Kranner, both K-State biochemistry professors, to create novel materials by a process that mimics insect shell formation. This understanding could lead to development of new pesticides as well as new materials."

Gehlke's role as leader of the chemical engineering department are also engaged in research that combines polymers and biotechnology. Mary Rezac and Peter Howard recently came to K-State from the faculty of Georgia Tech. Funded by a USDA grant, they are studying development of polymeric membranes that allow enzymatic conversion of natural by-products to more valuable forms. Professor John Schlip, through a DOE grant, is the leader in development of a Bio-based Materials Science and Engineering Program Graduate Certificate, which offers students an opportunity to specialize in development of various products, like plastics, from biological or agricultural sources, rather than from petroleum.

—by Mary Bankin
Cargill corporate giving—making a difference

The sign inside the door reads: "The Cargill Advanced Technology Classroom has been made possible through the generosity of Cargill."

Equipped with state-of-the-art educational technology, the interactive learning center houses computers with high-bandwidth access to the Web, video projection, and other projection devices to aid in digital communication and visualization technology.

And while design and furnishing of the space was aimed toward making a significant impact on the ability of engineering faculty to incorporate active learning in the classroom, the high-tech facility has also proved to be a valuable resource for an instructor from the English department.

Leena Chakrabarti teaches Written Communication for Engineers, English 415, a course that all engineering degree graduates must take. For the past three semesters she has taught her three sections of the course in the Cargill classroom in Fiedler Hall.

"Teaching in this technology classroom, inside the Engineering Complex, gives such credibility to the course," Chakrabarti said. "Students can bring their writing projects to class on a floppy disc where I am able to view their individual screens, point things out, and know on the spot that they understand and can correct their text."

Having access to Fiedler Library right across the hall is a benefit as well, if students run into problems with finding research materials or project needs. Alice Trussell, Fiedler librarian, developed a Web page especially for 415. Chakrabarti said, directly linked to resources particularly relevant to the course—databases, electronic journals, and subject guides.

There are 18 students per class and Chakrabarti said her sections always fill up very quickly. The other eight sections are offered in Eisenhower Hall and are taught with the aid of a technology cart. "But for me, she said, "I would not want to go back to the traditional classroom to teach this course."

Chakrabarti has taught Written Communication for Engineers since 1994 and said it was "hard" that allowed her the opportunity to teach in the Cargill classroom. She just "happened" to run into the head of the English department on the day he learned of the availability of the classroom and asked if she would like to teach her sections in the new classroom.

"At the time, I thought 'why not give it a try,'" she said. "But now that I've experienced using this wonderful facility, I want to continue teaching here as long as it's available."

—by Mary Rankin

Cargill funding

Along with the $100,000 Cargill Advanced Technology Classroom funded in 2000-01, the company's gifts to the college in 2002 include the following:

- Women in Engineering and Science Program (WESP) lecture series—$13,500
- Multicultural Engineering Program (MEP) monitoring program—$10,000
- Cargill Scholarship—$3,000
- Cargill Video Projection Cart upgrades—$2,000

Bringing the classroom to the student

An advanced degree in engineering. Beneficial in the job market—yes. A boost to on-the-job performance—yes. Personal accomplishment and increased knowledge—yes. Finding a way to conveniently complete the coursework—might be a problem, unless the university and the classes come to the participant, which is precisely the deliverable of K-State's Distance Master's Degrees in Engineering program.

Five degree programs—electrical engineering, civil engineering, software engineering, engineering management (administration), and chemical engineering—are currently offered through the Division of Continuing Education at Kansas State. The graduate courses in each are the same as regular on-campus offerings, only the delivery method is different. The degree awarded is a standard master's degree from Kansas State University and is in no way designated as "distance education" on either a student's diploma or transcript.

"This is an excellent way for someone to complete an advanced degree," said Elliot Steffler, engineering program coordinator for the division of continuing education. "Now nearly 10 years into the program, we're finding that distance students are often more successful than their on-campus counterparts in terms of earning high grades and completing the coursework."

Delivery methods include videotaped courses that run concurrently with the on-campus semester; World Wide Web courses delivered via the Internet; and multi-media courses that use a variety of resources, including lecture e-mail, Web-based chat rooms, and message boards.

"Typically about 100 students are enrolled per semester," Steffler said, and in the last five years we have had approximately 100 graduates in all programs.

"It's become very popular," she said. "We're expanding our market and even beginning to get international inquiries. Students have evolved from the early days of people gathering in front of a television set at a central location; now people getting their own videotapes in the mail or using their own computers to link up with instructors and their classmates."

For more information on the program, those interested can call 1-800-622-2352, send e-mail to degrees@k-state.edu, or visit the Web site at www.k-state.edu/cee/degree/.

Satisfied customers

Anita Ranhotra completed her master's degree in engineering management entirely by distance education courses, graduating in May 2001. She took one course per semester, including summers, over a four-year period.

"Pursuing an advanced degree via distance learning is ideal for many people, giving you an option that most programs lack, and that is flexibility," she said. "Taking classes via videocassette and via the Internet means you can do things as your schedule permits, rather than having a structured class to attend at a specific time and location. And if you travel or have to relocate during the course of your studies, distance learning can go with you."

Ranhotra was also a recipient of the Robert E. Sykes Scholarship, designated for only distance education students enrolled at K-State in either the engineering management or civil engineering master's degree programs. She earned her undergraduate degree from K-State in industrial engineering in 1994 and is a manufacturing engineer for Hallmark Cards, Inc., Kansas City, Mo.

"I would highly recommend pursuing a degree in this unique and flexible program," she said.

Kevin McLain is a geochemical engineer with the Missouri Department of Transportation. He will complete his master's degree in civil engineering from K-State via distance education in December 2003.

"I had become a PE," McLain said, "and with my company offering reimbursement for advanced degree classes, I decided to go for it. I had heard about K-State's program through word-of-mouth and really liked the flexibility of it, I'd definitely recommend it to others and have actually done so."

McLain has done most of his coursework by videotape, but has taken two Internet classes, and even attended two classes at the University of Missouri that will count toward his degree. A 1988 alumnus of K-State in civil engineering, McLain said becoming involved in his distance education degree "inspired" him to want to give back and help the university.

I saw it as a chance for my money to do a lot of good, so I made a gift to buy equipment for the geotechnical lab in civil engineering. My wife and I are real believers in education," he said.

—by Mary Rankin

Tower sings again

The late LeRoy Paslay, EE '30, '34, in memory of his wife, funded refurbishing of the Singing Tower at Sunset Cemetery, Manhattan, Kans. He had originally designed the tower's sound system and electrical components in 1932. The 2002 update was a joint effort of a team of KSU engineering faculty. Don Rathbone, former dean, was the project manager.
A gala evening

Dining, dancing, and socializing marked the evening of Oct. 26, 2002. Alumni, friends, faculty, staff, and students of the College of Engineering gathered for the annual Seaton Society Banquet and Engineering Ball. The social hour, banquet dinner, Hall of Fame induction, and Professional Progress Awards recognition all took place in the newly completed K-State Alumni Center. The College of Engineering Student Council then hosted the ball in the atrium of the Engineering Complex.
Professional Progress Award

2002 Advisory Council

Arnold A. Allemang
Executive Vice President, The Dow Chemical Company

Stephen Berland
President, M. Caddell, Inc.

Nadalee Bossie
Vice President, North American Customer Fulfillment, Talkeste.

Susan K. Buchanan
President, Kinney R. & Susan Buchanan, Inc.

Dixon R. Dall
Managing General Partner, Dell Capital Management

Richard L. Donalson
Senior Vice President-Railroad, Team Environmental

Johnson & Johnson

David S. Douglass
President, Honeywell Federal Manufacturing & Technologies

Joseph L. Downey
Senior Vice President and General Manager, The Dow Chemical Company

Gary W. Edwards
Senior Executive, Vice President-Railroad, Canco Inc.

Ivor J. Evans
President and COO, Union Pacific Railroad

Joe E. Fawer
President and CEO, Forco Corporations

Kent Glasscoch
Senior Vice President, Government Affairs

Randall D. Groves
Vice President, Rail Systems, Systems Group

Alan E. Kemper
Principal, Kemper Consulting

W. Michael Lackey
Assistant Secretary and Deputy Assistant Secretary for Financial Management, KDOT

Charles M. Manley
Secretary, Transportation

G.P. Peterson
President, Canadian Polywood Institute

G. Rhea Serpas
President and CEO, Serpas & Serpas

Edward H. Smith
President and CEO, BNSF Railway

Bill Stannard
Chairman

Larry Sterckene
Senior Vice President, Rail Operations, Padua Shipbuilders

Charles A. Stryker
President, C&S Construction, Inc.

Timothy G. Taylor
Senior Vice President, Chemicals and Polymers, Chevron Phillips Chemicals Co.

Robert B. Thorn
President, North America, Transportation & Civil Engineering, LLP

Greg Tucker
CEO, Exline-Neer

Herbert N. Whitney
President, CITGO Underwriters Insurance Company, CITGO Database Corporation

New members of the College of Engineering Advisory Council are from left to right: Robert Thorn, Bill Stannard, Stephen Berland, David Douglass, and G.P. "Bud" Peterson.

Hall of Fame

(standing, l-r) A. F. Bridgme, EE '86, Bridgme, Johnson & Hudn law offices; Stuart Curtis, IE '63, MS '64, chairman of the board, Curtis Machine Co., Inc., and Richard Gallagher

(seated, l-r) Randall K. Coonrod, CE '74, president, Coonrod & Associates Construction Co., Inc.; Vernon M. Weegge, CE '69, president, RJW Engineering Consultants

(above, from top) Joe and Sherry Downey; Dean Terry King and Ruth Coonrod; Joe and Bruce Johnson; (front) Earl Creel, Rhea Serpas, Pat Serpas, and Richard Gallagher
An early taste of the profession

Some students spend their summers in the sun—but for the first-year engineering students, summer brought opportunities to explore their career interests with internships.

The Summer Professional Experience for First-Year Students, available for the first time in summer 2002, allowed engineering students, who had completed their freshman year, to work in industries related to their engineering disciplines.

Several industries represented on the College of Engineering Advisory Council offered appointments to first-year engineering students with required academic credentials, said Richard R. Gallgher, associate dean for academics and administration in the College of Engineering.

The program was initiated to provide opportunities for outstanding students to experience early on the activities of an engineering and industry setting, he said.

The program also aims to keep students motivated in their pursuit of an engineering degree. Internships help illustrate the relationship between academic programs and industrial expectations.

"The summer internship allowed students to see how basic science and mathematics courses are important in providing the foundation for a successful academic and professional engineering career," Gallgher said. "Upon returning to the academic setting, the students now can observe the importance of transition courses as they move into the technical courses of their major."

Students were selected for internship consideration based on ACT scores, high school grade point average, their discipline of interest, and academic performance in the first semester of their freshman year. Gallgher helped connect students with industry representatives so they could apply and interview for potential internships.

Ashley Robertson, sophomore in chemical engineering, interned with Dow Chemical Company in South Charleston, W.Va., in the regulatory management expertise center. She worked with permits and compliance for water and air emissions and treatments. She also worked on industrial hygiene projects testing for moisture, taking humidity readings, and creating plots of problem areas.

Robertson also gained professional guidance from co-workers and experienced different areas in chemical engineering.

"I got to network with a lot of people who gave me advice about courses and career choices," she said. "It has also sparked my interest in areas that didn't really interest me before, such as chemical engineering in the automotive industry."

Rirra Vering, sophomore in mechanical engineering, interned with Union Pacific in Omaha, Neb., in the locomotive mechanical operations department. She used a mainframe to locate information and create reports about maintenance procedures performed on locomotives.

"I really enjoyed being able to work in a structured environment with a wonderful group of people," Vering said. "This gave me a taste of what it will be like working in future internships, and ultimately, in my chosen profession."

Vering said the internship has heightened her desire to apply to a career that suits her interests.

"One of the benefits of having an internship is not only that I benefit from the experience, but it also gives prospective employers the opportunity to see what sort of person they would be hiring," she said.

Nathan Ceney, sophomore in electrical engineering, interned with Union Pacific as part of the program.

Jimmy Kummer, sophomore in electrical engineering, interned with Dell Computer in Austin, Texas, in the current systems development lab. He worked with hardware troubleshooting for Dell's servers, assisted other engineers, and was involved in two product tests.

"I feel like I learned something new every day," he said. "I mainly learned the hardware architecture for some of Dell's servers, but I also learned about operating systems and circuit theory."

The internship helped Kummer reaffirm his career choice and gain an edge in obtaining future internships and jobs.

"This internship has given me an incredible step ahead in trying to find a job," he said. "Every employer that I have talked to has explained how important experience is. My resume now is full of traits that employers are looking for."

Gina Mercurio, sophomore in chemical engineering, interned with Dow Chemical Company in Midland, Mich., in the site logistics department. She helped design the piping layout for a chemical sampler to be installed at one of the rail car loading racks.

"I was able to enjoy a privilege only a select few freshmen get to have," Mercurio said. "I learned more from this experience than I could have learned from a classroom—n ot only in chemical engineering, but in communication, teamwork, and computer networking."

Mercurio said the internship helped acquaint her with the role of chemical engineers and provided an edge in classes. The internship also allowed her to experience a different part of the country and provided career direction.

"It helped me decide what to do with my future," she said. "Exposure to the career, as well as to the culture, turned out to be priceless attributes of this experience."

—by Shannon Hartenstein

Scholarship day

High school students examine K-State's quarter-scale tractor during a tour of the College of Engineering Scholarship Day Oct. 10. More than 280 students, parents, and teachers attended the event, which provided information about the college and its scholarships. Visitors met for an information session in the morning, and the Engineering Ambassadors led the afternoon tour of the on-campus facilities.

Honomichls share profession

continued from page 1

"I believe it is important to give back to the university," Dianne said. "Not only out of gratitude, but as a way to provide someone else with an opportunity to succeed. I credit K-State with the foundation for the success in my life. Many of my accomplishments are the result of my solid education and leadership skills gained during my college years."

"With the current state budget situation, she said, "it will become more and more imperative for alumni to provide support."

Kevin concurred with Dianne's assessment of their education's role in their career success. He said, "That education was made possible in part by generations of generous K-State supporters who came before us and helped keep our education affordable, and instilled excellence in the K-State program."

"We believe it is important for us to help future generations of engineers by supporting our Kansas universities and the profession."

Both have seen positive changes in the K-State College of Engineering since their time here. "I am constantly amazed with the progress that has occurred in the engineering program since I graduated," Kevin said. He commented not only on the obvious improvements in facilities, but also program content where leadership, teamwork, presentation skills, and ethics are now a regular part of students' experiences.

"I have great respect for the leadership Dean Kung instills in the college," he said. "His ability to infuse the business aspects of engineering with the academic and technical aspects, combined with the mission of the university with the needs and direction of the engineering profession."

"In the working world," Dianne said, "problems are not solved alone and process is not completed by just one person. I'm happy not only to see a greater emphasis on leadership and team skills, but written and verbal communication. This is one of the most important aspects of a successful career and life in general." Distinguished professionals set apart by their service— the Honomichls, 2002 USA Designees, well represent the university and its College of Engineering.

"K-State holds a special place in my heart at the place I met my husband," Dianne said. "We have many happy memories surrounding K-State and Manhattan and will continue to build on those with our support of the school."

—by Mary Rankin
Can anyone identify the men in the photo, or something about the era and/or project they're working on? Our resident team of experts, a group of current and retired engineering faculty who meet regularly in the Osian for coffee, know no names, but did offer these opinions. Based on the width and balance, the timeframe is probably early 1940s. Location is the west area of the then engineering shops. Both because the group is looking at blueprints, and of who occupied the shops at that time, the scene is more than likely connected to industrial engineering. Anyone who can add information or dispute our assumptions, contact us at our impact address (see far right column).

Deaths

1936

Alvin J. Misler (GEOL) died June 16, 2002, in Middletown, Ohio. He received his bachelor's degree in geology at K-State in 1936 and his master's degree in geology at Vanderbilt University in 1937. He was a member of the K-State President's Club and Engineering Advisory Council, received the Kansas State University Distinguished Service Award, and had been inducted into the K-State University Engineering Hall of Fame. He retired from his position as senior vice president and assistant to the president of Armstrong Soil Corporation in 1980. Misler is survived by two sons, one daughter, four brothers, seven grandchildren, and two great-grandchildren.

1941

1942

Walter A. Adams (ME) died June 8, 2002, in Albuquerque, N.M. He is survived by his wife, Jean Glenn Adams, two children and two grandchildren. Jean would like to hear from former classmates. wajadq@aol.com

1947

Harold L. Gibson (CE) died March 11, 2002. He retired as director of operations for Stillwater, Okla., in 1988. He also served as the Cowley County, Kan., county engineer and was city engineer for Wellington, Kan., Winfield, Kan., and Enid, Okla. He is survived by his wife, Marilyn.

1949

Richard Thomas Stockman (ME) died in 2000 in Gran Valley, Calif. He is survived by his wife, Giovanna, four children and six grandchildren.

1950

Seyoum Dumeke Akelewo (CE) died in February 2000. He served as mayor of Addis Ababa, Ethiopia, and general manager for the Imperial Highway Authority in Ethiopia for 20 years. He is survived by one son.

1966

Raymond David "RD" Caughron (ME) died April 26, 2002, during a climb up Mt. Makalu, the fifth highest peak in the world. He was part of the 12-member international team making the journey in the Himalayas. Caughron received his master's degree in engineering in 1967 from K-State. He was a project management consultant in Berkeley, Calif.

1979

Timothy Michael Burke (CNSM) died April 30, 2002, after being struck by a car while bicycling in Las Vegas, Nev. Burke founded Burke and Associates, Inc., General Contractors/Builders in Las Vegas.

Take a few minutes to jot down job changes, births, deaths, professional or other activities, your retirement, or any remarkable news you'd like to share. Send your news to Impact by mail, e-mail, or fax, as listed below.

Want your classmates to contact you? Check the appropriate box below and we will include your address with your news. You must indicate that you want this information printed.

Please select and list only one type of contact information for publications.

☐ Mail ☐ Phone ☐ E-mail

New

Address

Phone

E-mail address

News for Impact

Send to: IMPACT Editor Engineering Communications Kansas State University 123 Wust Hall Manhattan, KS 66506-2508 or e-mail: impact@engr.ksu.edu or FAX: 785-532-6952

IMPA CT is published twice a year by the Kansas State University College of Engineering, Manhattan, KS 66506-2508. It is available on the World Wide Web at www.engr.ksu.edu.

Issue No. 8 Fall 2002

Editor

Mary Rankin

Contributing writer

Shannon Hattenstein

Art director

Whitchi Gardner

Graphic designers

Jose' Clemente, Bob Davis

Photographer

Dan Doerrnert

IMPACT is available on the World Wide Web at www.engr.ksu.edu.

Issue No. 8 Fall 2002
Impact

College of Engineering - Kansas State University - Fall 2002

New Duties for Harper

Faculty Awards

2002 Hall of Fame Inductees

Enrollment

495

Information Center
Kansas State University
College of Engineering

Excellence in Engineering Career Awards