


My goal for the next half hour is to provide
an overview of the basic physics
regarding drivers of climate change on Earth
including the role of those Greenhouse Gases (GHGs)

* | will first identify the major GHGs and provide a context for
a need to have an improved understanding of ‘the physics’

* The emphasis will be on forcing by electro-magnetic
radiation [solar and terrestrial] and the ‘Greenhouse’
metaphor

* | will cover both natural and human-induced changes in
radiative forcing and the role that greenhouse gases [GHGs]
have in regulating surface temperatures

A handout is available with several key graphics that are
used in the presentation



The main greenhouse gases
Breakdown by type of gas of global greenhouse gas emissions, 2004

itrous
oxide
1.9%

Other 1.1%

Fossil fuels
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Deforestation
17.3%
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Z2.8%

Source: TIPCC
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When | go to the doctor, they

Some of Earth’s symptoms:
take my temperature and ...

- warming temperatures (slight fever)

- change in gaseous composition (atmos)

woawe - rapid change in surface appearance (LUCC)

Teeas- 1t - changes in chemical indicators (nitrogen)
‘ - loss of key biotic components

- new organisms have been introduced

- rapid depletion of stored reserves (water)

- rapid depletion of stored reserves (energy)

- * -the rates of change are increasing




Some of Earth’s symptoms:
- warming temperatures (slight fever)
- change in gaseous composition (atmos)

Global change is - rapid change in surface appearance (LUCC)

- changes in chemical indicators (nitrogen)
much more than - loss of key biotic components

jUSt climate Change - new organisms have been introduced

- rapid depletion of stored reserves (water)
- rapid depletion of stored reserves (energy)
- the rates of change are increasing

There is a complexity of interactions across the atmosphere, the
biosphere, the hydrosphere, and the cryosphere

We have a longer scientific history of understanding the causes of
human-induced climate change compared with our
understanding of the complexity of global change

Human forcing of climate change is something we can (and many
would say should) do something about

So let’s work on understanding radiative forcing of the climate
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Figure 2.1 Spectral distribution
of solar and terrestrial radiation,
plotted logarithmically, together
with the main atmospheric
absorption bands. The cross-
hatched areas in the infrared
spectrum indicate the ‘atmos-
pheric windows' where radiation
escapes to space. The black-
body radiation at 6,000 K is

that proportion of the flux which
would be incident on the top of
the atmosphere. The inset
shows the same curves for
incoming and outgoing radiation
with the wavelength plotted
arithmetically on an arbitrary
vertical scale. :

Using the Stefan-Boltzman and

Wien's Displacement laws — we

get more energy at shorter

wavelengths (Solar) from the
hotter Sun compared with the
(Thermal) cooler Earth

‘Amount and wavelengths

of Energy emitted are a
function of the temperature
of the emitting object.
Warmer =» more + shorter A

Source. Mostly after Seilers 1965.



Solar Cycle Variations

....... . | Cycle irradiance amplitude variation
%‘1367 is now about 1 W/m?2
g =
0}
U =
| G 1366 -
| 5 _
o
8 el .
g e 8 1365 - Irradlance ( / annual) Solar Flare Index N
Sunspot Observations 10.7 Radio Flux
1975 1980 1985 1990 1995 2000 2005
400 Years of Sunspot Observations
Modern
] Maximum [ 220 ]
0
a-=
|3 Maunder = |4. | ny
. Minimum " W e
1 LT A
] - SRRy AR \4
1600 1650 1700 1750 1800 1850 1900 1950




1363
s

18681%

1360
1358 Composite TSI

L] [l | [l L] [l L] | L] L i i | [l i [l [l | [l i i i
158 19495 2000 2005 2010 2015

Total Solar Irradiance (TSI)
Wim*

Figure 1. Near the peak of the solar activity cycle many sunspors appear regularly on the Sun, as seen in the left image on March 30, 2001, in
Cyele 23. Currently, solar activity is near the minimum of the 11-year cycle and sunspots may be asbsent entirely, a5 seen on May 8, 2007, in the
right image. The images are of the intensity of 2 narow band of visible light, made by the Michelson Doppler Imager (MDI) instrument on the
Solur and Heliospheric Observatory (SOHO).
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Ice Age Climate Forcings (W/m*)

aerosols

greenhouse -0.5%1
ice sheets gases
&

vegetation CO, Foreing ~ 6.6 + 1.5 W/mf

CH4 Obiewed AT ~ 5 + 1°C
NO
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Atmosphenc Absorptlon Bands
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Radiation Transmitted by the Atmosphere
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Table 5.1 ' '
Estimates of global average temperature changes under different assumptions about changes in greenhouse
gases and clouds.

Greenhouse gases Clouds Change in °C from current average
| global surface temperature of 15 °C

As now As now a
None | As now @
None None —

As now | None 4
As now As now but + 3% high cloud 0.3
As now ' As now but + 3% low cloud -1.0
Doubled CO, concentration: As now (no additional

otherwise as now ~ cloud feedback) 1.2

Doubled CO, concentration
+ best estimate of feedbacks Cloud feedback included S :; !
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¢ . The while lines in the low clouds off the
"' west coast of the US show the effects of
aerosols released from the smokestacks of
ocean going vessels. The aerosol particles
help make the clouds brighter (more 4
reflective) and this helps cool the planet.







Fig. 5.22

Simulated global
annual surface air
temperature from 1860
to 1990 allowing for
increases in
greenhouse gases only
(dashed curve) and
greenhouse gases and
sulphate aerosols
combined (full curve)
compared with
observed changes over
the same period™,
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Fig 5.21

The predicted and
observed changes in
global land and ocean
surface air temperature
after the eruption of
Mount Pinatubo, in
terms of three-month
running averages from
April to June 1991 to
March to May 1995%
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1999-2008 Mean Temperatures

Versus
1940-1980 Means
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A Parrot Head Looks at the IPCC

“wasted away in Margaritaville”

* FAR = First Assessment Report 1990
— ‘Its nobody’s fault’ [Jimmy Buffett — Margaritaville]

— “Thus the observed increase could be largely due to this
natural variability: alternatively this variability and other
human factors could have offset a still larger human-induced
greenhouse warming.”

* SAR = Second Assessment Report 1996
— ‘It could be my fault’

— “The balance of evidence suggests that there is a discernible
human influence on global climate. ”

 TAR =Third Assessment Report 2001
— ‘It’s my own damn fault’

— “There is new and stronger evidence that most of the
warming observed over the last 50 years is attributable to
human activities.”
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The Physics and Implications:

1. The major cause of paleoclimate change was
weak external forcing

2. The major mechanism for cooling the planet
(or warming it back up) was change in ice
sheet area, vegetation, and GHGs
through feedbacks

3. Human-induced radiative forcings due to
increases in GHGs are much larger than

t
4. Per
t

ne radiative forcings that triggered the ice ages
naps humans should do something to modify

neir forcing of on-going & future climate change
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