CLEANING UP PESTICIDE-CONTAMINATED SOIL WITH IRON METAL

P.J. Shea, S.D. Comfort, and T.A. Marharek
School of Natural Resource Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588; Phone: (402)472-1533; Fax: (402)472-7904.

ABSTRACT

Spills at agricultural cooperatives and farmsteads can result in ground and surface water contamination by pesticide and fertilizer products. Finely ground iron metal (zerovalent iron, Fe0) can be used to promote rapid degradation of many chlorinated and nitrogenated compounds, including common agrochemicals. When Fe0 is added to soil under anaerobic conditions, corrosion (oxidation) of the iron can be effectively coupled to reductive dechlorination and nitro group reduction. We conducted a field demonstration at a Nebraska farm cooperative on soil contaminated with metolachlor (>1400 mg kg-1), atrazine (>250 mg kg-1), alachlor (>90 mg kg-1), pendimethalin (>90 mg kg-1), chlorpyrifos (>15 mg kg-1), and nitrate-N (>900 mg kg-1) Contaminated soil was placed in windrows and mixed with a high-speed mixing and fractionation implement. Soil windrows were treated with Fe0, Fe0+ aluminum sulfate, and/or acetic acid and incubated under clear plastic at a soil water content >35%. Within 90 d, pesticide concentrations decreased by as much as 99% (metolachlor, adachlor, pendimethalin), 96% (atrazine), and 96% (chlorpyrifos), while nitrate-N concentration decreased by >90%. Laboratory experiments using radio-labeled metolachlor indicate that the Fe0 treatments can result in products that are more biodegradable. These results combined with the relatively low cost of Fe0 support its use for field-scale treatment of pesticide-contaminated soil, especially when land spreading or landfilling is prohibitive.

Key Words: remediation, zerovalent iron, chemical reduction, dechlorination, abiotic degradation