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ABSTRACT

A two-stage technology employing green solvents such as supercritical CO, (SC-CO,) and supercritical
water (SCW) for the extraction and destruction of polychlorinated biphenyls (PCBs)/poI ycyclic aromatic
hydrocarbons (PAHs) from contaminated soils/sediments is proposed. Results of our laboratory and bench-
scale investigationsindicate that SC-CO, modified with 5% methanol, is an effective solvent and conditions have
been defined to achieve sub 5 ppmin 45- 60 minutesfor 99.8% removal. Comprehensivedataon PCB/PAH
solubilitiesin SC-CO,/MeOH, partition equilibria, and desorbtion provide asolid basis to develop models
regarding the extraction of these pollutants from solid matrices. Further, the supercritical water oxidation (SCWO)
stage, coupled to the extraction process with three possible configurations, would provide clean effluent
materials. The ultimate products of the proposed technology are mainly clean soil/sediments and inorganic
species such asH,0, CO,, and small amounts of chlorides. Our SCWO studiesindicate that 5245 ppm Aroclor
1248 in methanol “simul ated soil extract sol utions can be oxidized to 99.95% conversion in less than one minute at
550°C. An economic analysis based on three possible configurations of the technological process indicates that
the expected cost of $198-318 per m® of soil processed iseconomically competitive.
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INTRODUCTION

Theobjectiveof thisstudy isto develop an
economica technology based on supercritica
fluids (SCFs) to remediate contaminated soils
and sediments. Chlorinated xenobiotics, such as
polychlorinated biphenyls (PCBs), polychlori-
nated dibenzo-p-dioxins (PCDDs), polychlori-
nated dibenzo-furans (PCDFs), and polycyclic
aromatic hydrocarbons (PAHSs) aremgjor
pollutantsat hazardouswaste Sites.

Despitegreat effortsand expenditure of
resourcesto develop both technically and
economically effective cleanup processesof
PCB/PAH-contaminated soils/sediments, no
widely accepted methods have been found and
further researchisstill needed (GAO/RCED-
96-13, 1996). Nevertheless, recent develop-
ments show that the number of availabletreat-
ment methodswill probably increaseinthe near
future (Akgerman et al., 1997; Ekhteraet al .,

1997). Engineering know-how concerning unit
operations, hazardouswaste treatment, and
transport and handling of soil isneeded for
development and implementation. A short
overview of processesthat have been appliedin
practice or which are currently the subject of
intenseresearch for ascae-up designisshown
inTablel.

Themain advantages and disadvantages,
statusof development, and limited economic
evaluation of these processesaregiven. These
PCB/PAH remediationtechnologiesfor soils/
sediments can begroupedinto threegenerd
categories: (1) extraction/removal, (2) destruc-
tion after separation, and (3) in Situ processes.
Although EPA isconsidering thepossibility of
“natural” processesfor remediation of soils/
sediments contaminated by organic pollutants
like PCBs (Renner, 1998; Cooney, 1996), we
think that an effectiveremediation strategy
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should combine“natural” processesfor broad
and lightly contaminated areasand aggressive
technol ogies such SCF-based processesfor
quick remova and destruction of heavily con-
taminated * hot spots.”

BACKGROUND

Supercritica fluidtechnologies
(supercriticd fluid extraction, SFE, and
supercritical water oxidation, SCWO) are
drawing much attention asemerging techniques

for soil remediation dueto thefollowing attrac-
tivefeatures. (a) Cleanness. A supercritical
fluid processemploysenvironmentaly benign
solvents (CO, and water) to extract/destroy

pol lutantsin contaminated soil/'sediments
without destroying the structureand atering the
major propertiesof thetreated soil5/sediments.
(b) Quickness. Thecleanup canbeachievedin
arelatively short processing time (10 - 60 min).
(c) Widerange of application. The SFE process

Table 1. Comparison of relevant processesfor remediation of PCB/PAH-contaminated soils/

sediments.

Process? Advantages Disadvantages Status® | Cost ($/m®) | Reference
Supercritical g&?{g&f;ﬁfﬂj@ ) Eﬁﬁ gg/i;eat L 198-318 | Tavlarides
Fluid Bxtraction* Cleaned soils unmodified Soil excavation required SFE+SCWO | et 1999
In situ In situ (no excavation) Further PCB treatment Car
Thermel Applicable to heterog. soil | High temperatures C 100-380 1998
Desorptiont Broad applicability Slow process

L High extraction efficiency Diffic. to separate PCB
'é')?t;‘aitior:l"m Low T-P conditions Further PCB treatmert P 250-1169 '\ged;;g?
Portability Secondhand pollution v
High destruction efficiency | Hi9h 0%, high termp. GAO/RCD
. . . Emission of toxic 1996 EPA
Incineratior? Continuous flow system C >> 360
Broad applicability gas/ash Report
ap Irrev. soil degradation 1993
Supercritical High destruction efficiency | High corrosion .
Water Continuous flow system Requires an extr. step L SF:lengSé?(’jl\/?/ o ;aallla{ggc
Oxidatior? Portable, closed system High P-T conditions v
. Low T-P conditions Low destr. efficiency
g:ﬁ'gj" | o | POTBbIty Requires an extr. step P 350-360 Cirgua‘g;a’
Continuous flow system Low PCB/H,O soly.
Gas Phase High destruction efficiency | Uses high-risk H, Car
Chemical Continuous flow system High temperature C 350 1997 ’
Reductior? Portability Requires excavation
No secondhand pollution I\‘/OW ggr;tvr ergfless ) Carpenter
Bio-remediation® | Broad area of land applic. | “oY 30W P L 245-474 perter,
. - Inactive for ortho- 1985
Ambient conditions PCBs

aCategory of: (1) extraction/removal, (2) destruction after separation, (3) insitu process; °L =

Laboratory, P=PFilot, C= Commercid; °thiswork.
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isableto clean up PCB-contaminated soil/
sedimentswith PCB concentrationsin therange
of 10-10,000 ppm, which representsthe PCB
levelsin most contaminated Sites, and isparticu-
larly effectiveto remediate soilswith high PCB
concentrations. Finally, theconcentrated PCBs
collected after the extraction can beeasily
destroyed using other available methodssuch as
incineration or SCWO.

Theunique property of SCFsthat makes
themtechnically enticing isthat they show
enhanced ability to dissolve organic compounds,
and thissolvent ability can beeasly tuned by
changing temperature and/or pressure (McHugh
and Krukonis, 1994; Akgermanet al., 1993;
Brennecke, 1996). Thissengitivity totempera-
ture and pressureleadsto smple sol ute-solvent
Separation schemes. Other attractivefeaturesof
SCFsincludelow viscosity and high diffusivity
that are essential to reduce masstransfer
res stance during the desorption processes. The
two most popular fluids are supercritical CO,
(SC-CO,) and water (SCW) because they are
non-toxic, non-flammabl e, readily available,
andinexpensive.

SFE of contaminated soilshasbeen
studied by anumber of investigators (Modell,
1987; Hawthorneet al., 1989, 1992, 1993,
1994, 1995; Langenfeld et al., 1993, 1995;
Dooley et adl., 1987, 1990; McNally et al.

1993; McNally, 1995; Brady et al., 1987; Yang
etal., 1995; Markowz, 1996; Koineckeet al.,
1997; Schantz et al., 1998; Monterroet al .,
1996; Holst et ., 1992; Madraset a., 1994,
Zhouetadl., 1997). Weinvestigated PCB
desorptionratesand efficienciesfrom severa

spiked soil samplesand native Hudsonand St.
Lawrenceriver sediments(Chenetal., 1997,
Chen, 1997). Effectsof pressure, temperature,
cosolvent, soil moisture content, and initial
concentration on PCB desorption efficiencies
arereported. Itisfound that cosolvent and soil
moisture arethetwo most important factors
affecting PCB extraction efficiencies. Significant
differences between spike samplesand native
samplesdsoarefoundinthisresearch. Similar
studieswere conducted by Morsdlli et d.
(1998) and Liueta. (1991). Thestructureand
propertiesof PCB congenersarealsofoundto
haveasignificant effect on PCB desorption
(Reutergardh, 1998). Becnel et al. (1998)
studied the effectsof supercriticd fluid dengty,
temperature, and cosolventson PAH extraction.
Lutermann et a. (1998) investigated effects of
variousbinary and ternary SCFson extraction
of PAHsfromredl soils. Eatonet a. (1997),
Akgermanet a. (1996), Leeet d. (1995),
Knaff et a. (1997), Olesik et al. (1991), and
Madraset d. (1993) have made substantial
contributionsto quantify masstransfer, diffusion
coefficient, and desorption ratein SFE pro-
cesses. All of these studies have shown prom-
ise of SFE asan effectiveremediation process.
The solubility of asoluteinaSCFisone of
themost important properties (alongwiththe
masstransfer coefficients) that must be deter-
mined and modeled in order to design effective
SFE processes. Among thefactorsresponsible
for thelimited acceptance of the SFE processto
date, alack of solubility datahasbeenfre-
quently cited. A number of investigatorshave
published equilibrium solubility dataof various
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individual solidsin SCFs(reviewed by Bartleet
al.,1991; also Andrews, 1990; Johnston et al.,
1982; Yuetal., 1995; Miller et a., 1996 and
1997; Anitescu and Tavlarides, 19973, 1997b,
and 1999a). However, according to our present
knowledge, the solubility datafor individua

PCB congenersand Aroclor mixtureshave
beenlimited (Akgermanetd., 1997; Yuetdl.,
1995) until recently (Anitescu and Tavlarides,
19994). A great effort has been devoted to
develop reliablemodel sfor solubility calcula:
tions(Bartleet ., 1991; Bush and Eckert,
1997; Kwon and Mansoori, 1993; Kumar and
Johnston, 1998). Unfortunately, the critical
propertiesrequired for both solvent and solute
when an equation of stateisused are, in most
cases, unavailable. So, other modelssuchasa
dilutetwo-region solution theory (Wang and
Tavlarides, 1994), solubility enhancement-based
correlations(Miller et a., 1997), and other
semiempirical and empirical reationshipshave
been proposed (Vetere, 1998; Guigard and
Stiver, 1998; Buchwald and Kauschus, 1997;
Engelhardt and Jurs, 1997). Our solubility
studieson PCB/PAH compounds (Anitescu and
Tavlarides, 1997a,b; 1998; 1999a-c) provide
an adequate database and semiempirical rela-
tionshipsto salect optimum conditionsfor design
of large-scale SFE apparatus.

Solute partition equilibrium datawhich
determinethedriving force of desorption
processes are key elementsinthe modeling and
design of full-scaleapparatuses. Adsorption
equilibrium model sand experimenta datahave
been reported for severd volatileorganicsin
supercritical environments(2,4-dichlorophenol-

water-CO,, Akgerman et al., 1994; phenol-
water-CO,, Brudi et al., 1996; phenol-activated
carbon-CO,, Akmanet al., 1991). The parti-
tion equilibrium of aphenolic mixtureand a
PAH mixturein asoil-water-CO, systemwas
studied by Greenet al. (1996). Madraset al.
(1994) and Erkey et al. (1993) investigated the
adsorption equilibrium of naphthalene, phenan-
threne, hexachlorobenzene, and pentachlo-
rophenol between SC-CO, and activated
carbon. Thephenanthrenepartition equilibrium
data between SC-CO, and two soilswere
reported by Young et al. (1997). No datahas
been found for PCB partition equilibrium
between soilsand SCFs. A new sorption
apparatus developed in our laboratories pro-
vides data between organic solutes (PCB</
PAHS) sorbed on soil matricesand SCFsat
pressures up to 400 bar and temperatures up to
353K (Zhou and Tavlarides, 1999). Reliable
PCB partition equilibrium datahave been
obtained betweenreal St. LawrenceRiver
sediments and two SCFs (SC-CO,,, and SC-
CO,/5mol% methanal).

Thisstrong activity inthefield of SFE of
contaminated soilsunderscorestheinterest
generated for the potential of thistechnology to
dedl with thewidespread soilg/sediments
contamination problems caused by pollutants
like PCBs. However, amgor gap exists
between the laboratory resultsand the demon-
sration of thetechnica feasbility toremediate
the contaminated soilsand the economic viabil-
ity of theprocess. Further, thedatabaseisstill
insufficient for thedesign of afull-scale
remediation unit.
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Using“green” supercritical water solvent
instead of organic solventsin awidevariety of
chemical processesoffersenvironmentd advan-
tagesand may lead to pollution prevention.
Most of the recent work hasdealt with waste
treatment. Two reviewsinthefieldgivea
comprehensive account of researchin SCW up
t0 1999 (Savageet a., 1995; Savage, 1999).
Of dl thearticlespublishedinthisfieldinthelast
12 years(morethan 250), over half have
appeared since 1995. SCWO of organic
compoundsisthe processthat has undoubtedly
received the mogt attention. Thetechnology
takes advantage of the complete miscibility of
organic compounds and oxygen with SCW,
eliminating thed ow masstransfer processwhich
occursin multiphase systems. Moreover,
essentialy complete conversion of organic
carbonto carbon dioxide occurson thetime
scaeof afew minutes.

InMay 1994, thefirst commercidl SCWO
waste processing facility wasimplementedin
Austin, Tex., by Eco Waste Technologies
(McBrayer, 1995). The performance of thisunit
demongtratesthelarge-scaleviahility of the
SCWO process. For wastewater-treated
dudges, theeffluent meetsstringent environmen-
tal standardsat cost considerably lessthan
fluidized-bed incineration (Modéell et a., 1995).
Oe (1998) reported acomplete decomposition
of PCBsfeed upto 7% using abench-scale
apparatus, and Hatakedaet a. (1997) reported
SCWO of 3-chlorobiphenyl. Recently, Aki and
Abraham (1998) made an economic evaluation
of SCWO and acomparison with aternative
wastetreatment technologies.

Theseresultsdemonstratethefeasibility for
SCWO destruction of environmentally harmful
chemicalsincluding PCBs. However, thereisa
gapinavailabledatato determinethefeasibility
of SCWO of PCBYPAHsingenera andin
particular for PCBs/PAHsdissolved insolutions
extracted from soils. Further, no kinetic studies
have been reported on PCB oxidationin
SCW to determine reactor optimum condi-
tionsand the nature and concentrations of
reaction by-products.

EXPERIMENTAL

To securethe experimental datanecessary
for adesign of a SFE/SCWO process, we have
designed, built, and commissioned |aboratory-
sca eexperimentd unitsfor solubility data
acquisition (Anitescu and Tavlarides, 1997a-b),
screening partition equilibrium and desorption
studies(Zhou et ., 1998), and SCWO kinetic
studies(Anitescu et a., 1999). Thelaboratory-
sca e desorption studiesand the partition equilib-
rium studieson the samples have been conducted
to support the bench-sca e experiments.

A bench-scale SFE unit equipped witha
two-liter fixed-bed extractor has been built and
installedin our laboratory. Theunit employsa
low-pressure separator (31 bar) to separate
PCBsfrom CO,. Theregenerated CO, isthen
re-pressurized for reuse. Both pure CO, and
CO, with acosolvent can be used as SCFs.
Thesystemiscontrolled by acomputer andis
designed to operate at apressure range of 80—
650 bar and temperature range of 40—80 °C.
Theunit hasbeenfully tested using blank samples.
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Duetothefinding that significant differ-
encesexist between spiked and real-world
samples, threered-world St. Lawrence River
sediment samples have been obtained to con-
duct bench-scale studies. Cohesive studiesfor a
comprehens ve systematic eval uation of the SFE
process PCB require contaminated sediment
sampleswithsmilar propertiesand PCB
congener distribution patternsbut different PCB
concentrationlevels. Thethreerea-world St.
Lawrence River sediment samplesobtained
from acontaminated site near Massena, N.Y.,
meet these requirements. Thethree sediments
wereprepared by air-drying and seving through
aNo.30 screen. Minera properties, total
organic carbon (TOC), andinitial PCB concen-
trationsof thethree sedimentsgivenin Table2
indicatethat thethree sampleshave smilar soil
propertiesyet different level sof PCB concen-
trations. PCB congener distribution patternsin
thethree sedimentsarerdatively smilar (com-
pared to Aroclor 1248) and have shifted to the
light chlorinated congenersfromtheorigina
pattern of Aroclor 1248, probably dueto
naturally occurring dechlorination processes.

RESULTSAND DISCUSSION

Bench-Scale Desorption Study

Bench-scale experimentswere needed to
vaidateextraction efficienciesachievedinthe
|aboratory-scal e desorption studies, provide
information for the scaleup of the process, and
provideinformation for improving economic
analysis. Bench-scal edesorption experiments
were conducted on St. Lawrence River sedi-
ment #3 (Table 2). Based on theresultsof
laboratory desorption and partition equilibrium
studiesonthereal-world St. LawrenceRiver
sediments, the conditions of bench-scaledes-
orption studieswere determined as SCFsare
CO, and CO,/5 mol% methanol; samplesizeis
~1.500 kg; CO, flow ratesare 450 g/min and
250 g/min; temperatureis50 °C; SCF density is
intherangeof 10.5-15.0 mole/L.

Experimental datawerefor extractionsof
. LawrenceRiver sampleswithinitial concen-
tration of 1840 ppm. We noted therapid
desorption inthefirst 20 minutesto 6-9 ppm for
both cases. After 40 minutes, we achieved less
than 5 ppmfor both flows. Thelower flow rate
of 2.2 mol/min comparedto 4.4 mol per min

Table?2. Propertiesof real-world St. Lawrence River sediments.

Sediments CGomposition () TOC (%) PC(I?)p(ri%nc.
Sand Clay Silt
SStedll_rn';nt #1 37.67 32.72 29.60 1.34 130
gtedll_rr:m 42 55.73 23.21 21.06 121 710
SS;d'I‘n;t #3 58.38 22.10 19.53 1.76 2200
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Figurel. Supercritica fluid technology processfor soil cleanup.

waslessthantherate per kg of soil thaninthe
|aboratory-scale experiments, and suggestsan
economic savingsof SCFto achievethislevel of
Separation at 40 minutes.

Theprocessing cost of SFE heavily
dependsontheflow rate of the SCF and the
processing time needed to achievethe desired
level of decontamination. It took 60 minutesto
reduce PCB concentration from~2000 ppmin
real-world St. Lawrence River sediment toless
than 5 ppm with 5% methanol ascosolvent. It
also was noted that more than 98% of PCBsin
the sediment wereremoved inthefirst 10
minutes. Thefina 50 minutesof processingtime
only removed lessthan 2% of thetotal PCBsin
thesediment. To reducethe processingtime
per unit of sediment and improve cost efficiency,
amulti-bed configuration was proposed as
showninFigurel.

The proposed bench-scale configuration
congsted of three high-pressure extractors of
two-liter capacity. Atany moment, two of them

were coupled together whilethethird onewas
idlefor load and reload. Suchasystemwill run
continuoudly by switching extractorsat appro-
priate processing times. Theoutlet SCF of the
upper stream vessel, which hasvery low PCB
levels, goesto the second vessel which contains
freshly loaded soil with high PCB concentration
to desorb more PCBsbeforegoing into the
separation vessal. The proposed three-bed
systemwill roughly reducethe processingtime
for unit massof soil by one-half. Additional
bedswill further reduce the processing timeand
improve SCF utilization but will increase capita
cost of the system and compl exity of operation.
An optimization needsto be pursued to achieve
best overall cost based on thisstudy.

Themajor corresponding modificationsin
theexisting bench-scae SFE unitincluded
replacing the current one-bed extractor system
with athree-bed system and alow-pressure
flash tank separator, and updating the automatic
control system to support athree-bed opera-
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tion. Thebed designwill bespecifiedtofacili-
tate quick disconnection of thevessdl topand
loading/rel oading of soilswith acanister insert.
A six-port valvewill beadded at the outlet of
each vessdl to get effluent SCF samplesreadily.
A side-view gaugewill also beadded tothe
flash tank separator to better monitor liquid level
inthevess.
Supercritical Water Oxidation (SCWO)
Studies

SCWO studieswereinitiated to under-
stand thekinetics of methanol oxidation (solvent
for PCBssincethey areinsolubleinliquid
water) and to determinethe conditionsfor
completeoxidation of severa sngle PCB
congenersand the Aroclor 1248 mixturein
methanol. With appropriatemoddl s, thisinfor-
mationwill permit evaluation of thefeag bility
and cost of SCWO of PCB extractsfrom soils.
A study on SCWO of methanol (Anitescuetal.,
1999) was conducted to determine the capabil -
ity of theexperimental unit and to usethe
methanol SCWO kinetic modelsfor PCBY
MeOH studies. Experimenta conditionscov-
ered atemperature range of 400-500°C at 253
bar and residencetimerangeof 3-50s. For this
system, our datamay be compared with those
previoudly reported (Brock et a., 1996; Riceet
al., 1996; Tester et d., 1993). Twokinetic
modelswere successfully developedto correlate
theexperimentd data. Also,aGC/TCD analysis
was conducted for CO and CO, formation, and
apathway analysiswasconducted for the
formation of theseby-products.

Kinetic SCWO datawere obtained for
individua PCB congenerssuch as4-

chlorobiphenyl (253 bar, 380-600°C, 2.0-46.3
S, 40-540 ppmin MeOH) and 3,3 ,4,4’
tetrachl orobiphenyl (253 bar, 400-500°C, 5-
26's, 500 ppminMeOH). Theresultsfor the
latter show that an oxidation level of near 100%
can beachieved. Effect of temperatureand
residencetimeon oxidation of theabove
organic compoundswasalso studied. Theratio
of oxygen to organic reactantsfor these experi-
mentswas kept the same at 1.8 (20 % excess
of O,) after aparametric study conducted on
SCWO of methanal.

Animportant finding resulted intheoxida
tion study of Aroclor 1248 in methanol at 253
bar, 450-550 °C, 4-62 s, and 5245 ppm
(Anitescu and Tavlarides, 2000). Congener
specific anadysswasmadeand theconversion
patterns of ~50 componentswere determined
smultaneoudly. The production of thelowest
chlorinated congeners (which arenot signifi-
cantly presentintheinitia composition of
Aroclor 1248) by anincomplete dechlorination
processof higher chlorinated congenersat 500
°C and lower residencetimeswas observed.
Therefore, ashiftinthe congener pattern of
Aroclor 1248 occured between thefeed
material and the product. At 550°C and 54.4 s,
99.95% conversion for Aroclor 1248 feed of
5245 ppmin methanol was obtained.

A preliminary investigation hasbeen
conducted toidentify the oxidation reaction by-
products of 4-chlorobiphenyl and 3,3 4,4’
tetrachl orobiphenyl. The unreacted organicsand
by-productswere extracted from the effluent
liquid-phase samplesand andlyzed by GC/MS
and GC/IR methods. Theresultspositively
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showed biphenyl asamajor by-product and
severa benzenederivativesfor lower tempera
turesand residencetimevalues. However, there
wereno dioxinsamong them. The positive
identification and quantification of these
compoundswas not fully accomplished at
this stage of the project and needed to be
further researched.

Theneedfor futurestudy includeskinetic
dataacquisitionfor larger scalereactor design
and asdlective study for optimal reaction
conditionsfor satisfactory degradationto
harmlessdischargewaters. A pathway andysis
of specific congenersto explain adegradation
mechanismin order to optimize
thermoconditionsfor maximum and safe conver-
sonisasorequired.

Proposed Schematic of SFE/SCWO
Technology

Based onour currentinvestigationsand

coupledwithresultsintheliterature, several
aternative configurationsof our proposed ol
remediation processare suggested conceptually
inFigure2.

(1) Extraction; flashing, recompression,
andrecycleof CO,, distillation to recovery and
recyclethe bulk of methanol; and recovery of
concentrated PCBs/PAHsand organicsin
methanol for destruction by SCWO (on or off
site) or other methods.

(2) Extraction; flashing, recompression,
and recycleof CO,; SCWO of PCB/PAH/
MeOH stream from flash tank.

(3) Extraction; direct destruction of PCB/
PAH inthe SCF by SCWO,; recycleof condi-
tioned CQO,,

Thedternativesfor the SCF regeneration
and extracted PCB disposal sub-systemare
asoshowninFigure2. A decisonwill be
madeto select aproper dternative based onthe
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resultsof proposed experiments described
abovewnhich definethetechnica feasibility and
resultsof economic anaysswhich definethe
economicfeashility.

Economic Analysis

Soil remediation cost dependson opera-
tiond conditionsand system configurations.

Our proposed research will provideathree-
soil-system database which can beused to
suggest arange of operational conditionsfor soil
remediation. The processconfiguration canbe
categorized into three sub-systems: the SCF
delivery sub-system, the extraction sub-system,
and the SCF regeneration and extracted-PCB
disposal sub-system.

Thekey aspect of the processisthe
extraction sub-systemwhere PCBS/PAHs are
removed from soilsand dissolved inthe SCF
phase. For agiven site cleanup, factorssuch
as SCFflow rates, processing time, and size
and number of extraction vessel need to
optimized using theresults of the bench-scale
studiesand an economic analysisto achieve
lowest total cost.

Onedifficulty of the SFE processisto
measure and control theflow rate of SCFsat
high pressure. Toavoidthisdifficulty, one
dternativeistolet theddivery sub-system
control theflow rate of SCFsby pumpingliquid
CO,. A key factor to the control of the CO,
flow rateisto ensurethat CO, insidethe pump
headisliquidinstead of CO,vapor. Oneoption
to achievethisstateisto sub-cool theinlet CO,
to atemperature much lower thanitscorre-
sponding phase-equilibrium temperatureusinga
chiller (thisisthe configuration of our bench-

scaleunit). Another optionistouseanauxiliary
pump toincreasethe CO, fluid pressure before
themain CO, pump so that oneisassured that
the CO, isliquid at that processtemperature.
The configuration and design of thissub-system
solely depend ontheeconomic anaysis.

The proposed economic analysisweighed
all theaboveoptionsin order to evaluate capital
costs, labor costs, and processing costs. The
objective of thiseconomic anaysisisto suggest
anoptimized configurationfor agiven
remediation task.

Anupdated preliminary processeconomic
analysishas been conducted based on our
solubility dataand |aboratory-scaedesign data
using theredl-world, PCB-contaminated S.
LawrenceRiver sedimentsdiscussed above. The
processschematic showninFigurelindicatesa
three-stage extraction battery: oneextractor is
unloaded/| oaded and the processfluid flows
through the other two units. Theseunitsare
cycled appropriately. Theextract solution
undergoesahigh-pressureflashtorecover CO,
for recompression and recycle. Subsequently,
methanol isrecovered and recycled, andaPCB
concentrateisproduced for SCWO.

Thekey assumptionsfor acommercial-
sizeunit for SFE of chlorinated organicsfrom
soil are (1) the extraction unit processes1 m?®
every half-hour; (2) 12,000 m*/yr are processed
during 250 dayd/yr. for 24 hr./day operation; (3)
theinitid soil/sediment concentration is2500
ppm PCB dried to <1% moisture; (4) fina soil/
sediment concentrationis<5 ppm PCB; (5) soil
excavation and replacement costs $50/m?; and
(6) SCWO processing to destroy extracted
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chlorinated hydrocarbonsadds $15/m?to the
total cost of processing the soil/sediment. This
cost of SCWO isan updated price based on
the cost of $0.352/gal estimated by Modell
(1989) and Aki and Abraham (1998).

Thecomparisonin Table 1 showsthat the
cost of $198-$318/m*for SCE/SCWO of
PCBsfrom soilscompetesvery favorably with
other processes and underscorestheimpor-
tanceof vigoroudy pursuing thedemonstration
of thistechnology.

Thetwo-stage supercritical fluid technol-
ogy processweadvanceat Syracuse University
consistsof SFE of PCBs/PAHsfromthe
contaminated soil and SCWO of the extracts.
Figure 1 depictsthefirst stepwhereinthe
PCB</PAHs-contaminated soils are contacted
inamultistage SFE system, and the extracted
PCBs/PAHsare separated fromthe
supercritica fluidsby pressurelet-downand
could be concentrated by distillation. The
cleaned soilsarereturnedtothesite. The
second stage oxidizesthe extracted PCBs/
PAHS, cosolvent and other soil extractsina
SCWO unit to harmless oxidation products.
The oxidation can occur at theend or at inter-
mediate pointsin the separation step to recover
high pressure CO, asdictated by process merits
and economics.

CONCLUSIONS

Thesignificance of our work isthat we
have demonstrated that the SFE of CO,—5
mol% methanol can achievesub 5 ppmresidud
PCBsinreal-world St. Lawrence River sedi-
mentsand soilsfrominitia concentrationsof

Proceedings of the 2000 Confer ence on Hazar dous Waste Resear ch

~2200 ppm (4300 ppm with lab-spiked soils) in
45-60 minutes processing timefor 99.8%
remova. Supercritical water oxidation studies
indicate 5245 ppm of Aroclor 1248/methanol
simulated soil extract solutions can beoxidized
0 99.95% conversion with higher conversions
possible. An updated preliminary economic
analysisindicatesthis SCF technology cost
of $198-318/m? soil processed is economi-
cally competitive.

Fundamental processdataand appropriate
modelsobtained define

(a) solubilitiesof PCBsand PAHSsIn
supercritical CO,with and without cosolvents,
(b) effectsof processand soil conditionson
desorption efficienciesof sedimentsand
supercritica fluids, (¢) sorption equilibriaof
PCBs between supercritical CO, withand
without cosolvents and contaminated soils, and
(d) kinetic datafor oxidation of Aroclor 1248
and several congeners. Confirmatory bench-
scalestudies(ca?2.0 liter extractor volume)
will demonstrate the basic concept with real
SLR sediments.

These studiessuggest that amultistage
semi-batch processwith CO, and methanol
recycleand SCWO of the PCB extractisan
efficient processconfiguration. Other down-
stream process configurationsmay provemore
effective. Additional processinformationis
needed to define an operable and economic
processconfigurationtoimplement thistechnol-
ogy. Completion of thisproject frombasic
research to implementation makeseminent
strategica sense.
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