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ABSTRACT

Stabilization and remediation of |ead-contaminated soils have received considerable attention recently.
Amending Pb-contaminated soils with phosphate as an in situ remediation option has been proposed as an
alternative to other remediation options such as soil removal. Research shows that hydroxyapatite (HA)
[Ca,(PO,),OH] can reduce the bioavailability of Pb efficiently and thusis considered as an ideal phosphate
source for formation of lead pyromorphite. Environmental modelsareincreasingly being relied upon to help
identify the limiting factorsin such kind of in situ remediation.

In the present work, models which include adsorption, diffusion, and reaction have been devel oped to
describe the transformation of lead contaminants to pyromorphite in single particles, aggregates, and soil beds,
respectively. Principal factors controlling the time of remediation have been identified.

The contaminated aggregates remediation model has been developed and simulated to describe the
effect of initial contaminant concentration, diffusion coefficient, and aggregate diameter on the time of

remediation.

Key words: modeling, stabilization, remediation, hydroxyapatite, lead pyromor phite,

bioavailability

INTRODUCTION

In situ stabilization of soil lead by the
addition of phosphate mineralshasbeen consid-
ered acogt-effective and environmentally benign
aternativeremediationtechnology for Pb-
contaminated soils. Thismethod transformsthe
reactive and bioavailable Pbinto chemicd forms
that are stableand have extremely low solubility,
mobility, and bioavail ability under typical envi-
ronmenta conditions.

Lead pyromorphiteisoneof themost
stable Pb formsin soilsunder awidevariety of
environmental conditions. (Lindsay,1979). Ma
et a.(1993) showed that hydroxyapatite
(Ca(PO,),0OH) hasthe potentia of immobiliz-
ing Pbinsolution by forming
hydroxypyromorphite. Formation of pyromor-
phitesupon addition of apatite or soluble
inorganic Pamendmentshasbeen observedin

Pb-contaminated soil materias. (Cotter-
Howellsand Caporn, 1996).

However, little attention hasbeen paid to
modeling theformation of pyromorphiteusing
mathematical methods. Inthisstudy, modelsare
devel oped for both single-particleand ol
aggregates. Furthermore, two cases, stagnant
surroundingsand flowing surroundings, are
cons dered with respect tothesingleparticle.

MODEL DEVELOPMENT FOR A
SINGLEPARTICLE

First, consider thecasewhereadl leadin
theparticleisintheprocessof being completely
converted to pyromorphite. A (hydroxyapatite)
must diffuseto the surfaceto react with solid B
(lead compound) at theliquid-solid surface.
Reactionsof thistypearetypically zero order in
BandfirstorderinA(r=-kc, whenC,>0and
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r=0whenC,= 0) . Therate of themass
transfer to the surfaceisequal to therate of
surfacereaction.

Thefollowing assumptionsareimposed
whilederivingthemodd!:
(1) Particlesarein spherical form.

(2) Reaction only takes place at the solid-
liquid surface.

(3) The product does not form alayer on
the particle. The unreacted part of
the particlesis always accessible to
the hydroxyapatite.

(4) Theconcentration of the hydroxyapatiteis
kept constant. Therate of consumption
of hydroxyapatiteis

Wy :kc(CA_CAs) = :erAs )

Eliminating the surface concentration of A,

W, =-T, :&c 2
+

We consider two cases:
(1) Theparticleisimmersedin astagnant
fluid, inwhich casethe Sherwood number is

_kD _
Sh= D. =2 ©)

(2) Thefluid flowsaroundtheparticle, in
whichcase
Sh=2+0.6Re"? & (4)

where
Re= E
\/
8: = L
DA

Case 1: Stagnant Fluid
From Equation(3) , the masstransfer
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coefficientis
Kk =2Da (5
D
Equation (2) may bewrittenas
—_ kC kr —_ k

Tk Tk ©

Substituting Equation (5) into the above
equationgives

Lk ke,
* " kD * 1+D/D* ¥
2D,

whereD*=2D, /k.

A lead molebalance onthe solid particles
yieds

In—Out + Generation = Accumulation

d (pn D3/6) ®
dt

Accordingtothestoichiometric relation of
A and B, lead pyromorphite can beformed
with ether chlorideor hydroxyl ions.
Ca, (PO,),OH (s)+Cl” +H" - >
Ph, (PO,), CI (s)+5Ca* +580;" +H,0
Ca, (PO, ), OH (s)+5PbS(s) +Cl~ +H " +100,
->Pb, (PO, ), Cl (s) +5Ca*" +5307 +H,0
Ca, (PO,), OH (s)+5PbCO, (s)- >
Pb, (PO, ), OH (s)+5Ca* +5CO;:" ©)

0-0+r,1D? =

For al cases, wehave: -5r ,=-r
Equations(7) , (8) and (9) can beused to

obtain

d_D — _10(_rA) — _10k.c, 1

dt o) p 1+D/D*

dit 1+D/D* (19
where 10k ¢

gq = 10K.C, a
o)
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Figurel. Conversiontimefor lead for the case
of astatic aqueous phase.
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Figure2. Conversiontimefor PoSO, for the
case of astatic aqueous phase.

Att=0, D=D,
Equation (11) can beintegrated to obtain

D, -D +%*(Di2 -D?) =at

Thetimefor complete conversionisfound
by letting D =0; that is,

(=1

(o i

2
+ D g 12
2D*O

Consider four different speciesof B:

Q) Pb p=548* 10* mol/m?
(2) PbSO, p=210* 10* mol/m?
(3) PoCO,  p=2.45* 10* mol/m?
(4) PoS p=3.17* 10* mol/m?

Three different concentration of
hydorxyapatite:

¢, =5.18 mol/m?

¢, =0.518 mol/m?

¢, =0.0518 mol/m?

Four differentinitia particlediameters.

D.=0.001m

D.=0.002m

D,=0.005m

D.=0.01m
Letk =10*m/s, D, = 10°m?/s.

The resultsfor thiscaseareshownon
Figures1-4.

Case 2: Flowing Fluid
Inthiscase

Sh=2+0.6Re"> ¥° 3)
inwhich

v _10°m’/s
D, 10°m’/s
_ DU _D*Um/s
v 10°m?/s
(takefluid velocity asU m/s)

<=

=1000

Re =10°DU

Sh= k[c)D =2+0.6* (10°DU )" (1000)**

A

=2+6000vDU

Thenk = (2+6000vDU )* D, -
D
From (6)
—Ta = k Ca
1+k /K

Substituting Equation (13) into Equation
(6) wehave

Lok KC
1+kr/kc 1 krD

+

(2+6000vDU )* D,
Again
d_D — _10(_rA) - _1OerA 0
dit p P
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Figure3. Conversiontimefor PbCO_for the
case of astatic agueous phase.
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Figure4. Conversiontimefor PbSfor thecase
of astatic aqueous phase.

1

1+ kD
(2+6000vDU )* D,

1

kD

(2+6000vDU )* D,

=-a

1+

where,
_ _10kc,
p
dD (2+6000vDU )* D,

o (2+6000vDU )+ D, +k D

(14

Numerical methodsare used to solvethis
differentid equation.
Theresultsfor thiscasearegiven by
Figures5-8.

DISCUSSION OF RESULTS
Simulation for lead particle in stagnant
fluid

Theresultsof smulationfor thecaseof a
singlelead particle surrounded by astagnant
fluid are presentedin Figures 1 through 4. In
Figurel, threedifferent concentrationsof the
applied hydroxyapatiteand particleswith four
different diametersareconsidered. Theresults
indicate that the concentration of hydroxyapatite
affectsthetimeof remediation Sgnificantly. At
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large hydroxyapatite concentrations, the
remediation processtakes place much faster
compared with small hydroxyapatite concentra-
tions, becausethereaction rateisfirst order
with respect to the concentration of hydroxya-
patite. Also Figure 1 reveal sthe effect of
particlediameter ontherate of remediation. For
particleswith small diameters, the hydroxyapa:
titediffusesmorerapidly ingdetheparticle. The
hydroxyapatite movesextremely dowinlarge
particles, thereby prolonging substantialy the
timefor remediation. Figures 1 through 4 show
that theinitial lead concentration also hasan
effect ontheremediationtime. A smal initial
contaminant concentration requiresasmall
hydroxyapatite supply. Thuslesstimeisrequired
for completion of theformation of pyromorphite.

Simulation of lead particle in flowing fluid
Theresultsof smulationfor thecaseof a
singlelead particle surrounded by aflowing fluid
areshownin Figures5through 8. Figure5
indicatesthat theflow rate of the surrounding
fluid hasan effect on theremediation time. With
larger flow rate, the masstransfer coefficientis
greatly enlarged, which significantly enhances
theremediation process. Comparison of Figure
1with Figure 6 reveasthat at the same condi-
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Figure5. Conversontimefor lead with flowing
surroundingsat different flow velocities(D=10°
m?/s, k =10 m/s, ¢,=5.15mmol/l).
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Figure6. Conversontimefor Pb at different
valuesof ¢, (D,=10°m?/s, k =10*m/s, U=10*
nm/s).
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tion, flowing surroundingswill effectively reduce
theremediationtime, even at alow flow rate of
U =10*m/s. Figures6 and 8 alsoindicate that
the concentration of hydroxyapatite hasagreat
effect on theremediation processin the cases
with flowing surroundings. Larger particlestake

moretimeto completethe process.

CONTAMINATED AGGREGATE
REMEDIATION MODEL

The contaminated aggregateremediation
model considersthat thelead contaminantsare
initidly uniformly deposited in soil aggregates.
Thefollowing assumptionsaremadein deriving
themodd!:

a. Aggregatesarein spherical shape;

b. Aggregatesare saturated, homogeneous,
and isotropic and are made up of solid
particlesand stagnant water;

c. Thetemperatureis constantin
the aggregate;

d. Lead contaminantsareuniformly deposited
withintheaggregate;

e. Reactiontakesplaceat solid surfaces
withintheaggregate;

f. Thereaction isof 1% order with respect
to HA and O order with respect to
lead compound,;
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g. Transportinthe aggregateisby diffu-
siononly;

h. Thetransport resistance of HA tothe solid
particlesurfaceisnegligible;

I. TheHA concentration at the aggregate
surfaceiscongtant;

j. Theinitial amount of HA in solid phase
isnegligible;

k. Thelead compound existsin phaseequilib-
riumwithliquid and solid phases; the
diffusion of dissolved lead compound
concentration can be neglected;

l. No product layer will beformed onthe
solid particle.
Themasshbaanceof HA inaspherica
aggregategives
oc, _D, 0 Q,0c,O
— n=_a_ —Lm+r
ot tlord ard

r, =-k.c, if thereisunreacted lead present
r,=0 if thereis no unreacted lead

.C. t=0,c,=0 fordlr

B.C. c,=c} ar r=R, for all t

If thediffusion of lead isneglected,
—rg = -5r, =-5Kk.C,
dc, _

—B =5, ¢/ p*10°
& A&/ D
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Figure7. Conversiontimefor PbCO,
(D,=10°m?/sk =10* m/s, ¢,=0.0518 mmoal/l).
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Figure8. Conversiontimefor PbCO, for
different valuesof ¢, (D,=10°m?s,
k =10"m/s, U=10"m/s).
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Numerical resultsare shown on Figures9-14.

DISCUSSION OF RESULTS

Theresultsof smulation for remediation of
soil aggregatesare presented in Figures9
through 14. Figure 9 showstheeffect of
diffusion coefficient andinitid contaminant
concentration on theremediationtime. Increas-
ing thediffuson coefficient enhancestransport
of hydroxyapatiteins detheaggregatewhich
reducesremediationtimegreatly. Larger initial
concentrationsof contaminant need more
hydroxyapatite, which resultsinlarger
remediationtime. Theeffect of diffuson coeffi-
cientismoresgnificant at highinitia contami-
nant concentration. Figure 10 indicatesthat
reaction constant isalso animportant factor that
affectstheremediation process. Figures9 and
10 show that therate of conversion dependson
thevaluesof therate constant, aswell asthe
diffusivity. Substantia increasesin conversion
time occur when either valueisreduced. The
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effect of reaction rate constant isalso more
sgnificant at highinitial contaminant concentra:
tion. Figure 11 reved stheeffect of aggregate
sizeontherateof remediation. For aggregates
withsmall diameter, the hydroxyapatite diffuses
morerapidly insdethe aggregates. Thehy-
droxyapatitemovesextremely dowly inlarge
aggregates, which causeslonger remediation
time. Figure 12 indicatesthat the concentration
of hydroxyapatiteaffectssgnificantly thetime of
remediation. Large hydroxyapatite concentra-
tionsmake hydroxyapatite moreaccessibleto
react with lead contaminants, whichleadsto
shorter remediation timescompared with small
hydroxyapatite concentrations. Figure 13 shows
that at the same condition, PbSisthe most
difficult to remediate because of itslarger
dengity among thethreelead contaminants
examined. Figure 14 presentsaconcentration
profileat the center of theaggregateasa
functionof reactiontime. Theremediationtime
isdefined asthetime needed for the concentra-
tion of lead contaminant to drop below 1 ppb.

CONCLUSION

Mathematical modelshave been devel -
oped to analyzelead stabilizationinasingle-soil
particleand aggregated soil. Inasingle-soil
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Figure9. Totd conversiontimefor PbCO, for
different valuesof D, (D=0.02m, c,°=2.6 g/l,
k=10"1/s).
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Figure10. Tota conversiontimefor PbCO, at
different val ue of reaction rate constant (D=0.02
m, ¢,°=2.69/l, D,=10°n?/s).

particlemode, only thediffusonresstanceat
the particlesurfaceisconsdered. Whileina
soil-aggregatemodel, thediffuson resistance
withinthe aggregate d oneistakeninto account.
Inthereal system, both resistancesareimpor-
tant and should be considered s multaneoudly,
which may resultinlonger remediationtimefor

thesystem.
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NOTATION

K. masstransfer coefficient (m/s)

k. reaction rate constant (m/s)

r rate of reaction of A (mol/m?s)

D, effectivediffuson coefficient (m?/s)

D, initial diameter of theparticle(m)

p dengity of the solid particleor aggregate
(kg/m’)

£ volumetricfraction of liquidinthe
agoregete
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Figure11. Total conversiontimefor PbCO, at
different diametersof aggregate (k =10*1/s,
c,’=2.69/l,D,=10°m?s).
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Figure14. Concentration profileat the center
of theaggregate (c, =2.6 g/l, D,=10°m?/s,
k =10“1/s, c,=100 mg/kg, D=0.02m, ).

C, concentration of |ead compoundinsolid
phase (mg/kg)

C, concentration of pyromorphiteinthe
solid phase (mg/kg)

C, concentration of HA intheliquid phase
(kg/n)

T tortuosity of poresintheaggregate
U veocity of flowing fluid (m/s)
% viscosity of thefluid (n?/s)
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