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ABSTRACT

Biofilm-forming microbes can form biobarriersto inhibit contaminant migration in groundwater. Also
subsurface biofilms have the potential for biotransformation of organic contaminantsto less harmful forms,
thereby providing an in situ method for treatment of contaminated groundwater supplies. We present a
mathematical and numerical model to describe the popul ation distribution and growth of bacteriain porous
media. The model is based on the convection-dispersion equation with nonlinear reaction terms. Accurate
numerical simulations are crucial to the development of contaminant remediation strategies. We use the
nonstandard numerical approach that is based on nonlocal treatment of nonlinear reactions and modified
characteristic derivatives. It leadsto significant, qualitative improvementsin the behavior of the numerical
solution. Numerical resultsfor asimple biobarrier formation model are presented to demonstrate the perfor-
mance of the proposed new method. We show comparisons with experimental results obtained from Montana

State’s Center for Biofilm Engineering.
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INTRODUCTION

Controlling pollutionin underground water
isavery important and difficult problem. There
arebacteriathat will destroy many organic
contaminantsin subsurfaceregions. But for
most pollutants, including heavy metas, amore
promising concept isthe creation of biobarriers
for containment and remedi ation of contami-
nated soil and groundwater. Biobarriersarein
Stu barriersthat areformed by stimulating the
growth of biofilm-forming microbesthat are
already present or areintroduced intothe
aquifer. Asthemicrobia biomassincreasesit
plugsthefree pore spaceflow pathsthrough
porous media, thereby reducing thehydraulic
conductivity and masstransport properties
(Cunninghameta., 1991). By adequately
choosing whereto plug the porousmedium, itis
possibleto prevent the migration of groundwa-

ter contaminantsfrom hazardouswaste Sites.
Aneven better scenarioisto havebiobarriers
that will not only contain the contaminant plume
but will aso degradeit.

Mathematical modelsareneeded to
complement experimental work into the use of
biofilmstoform biobarriers. Mathematica
modelshelptoexplain themechanismsfor flow,
solutetransport, biologica and chemical reac-
tions, biofilm accumulation, and natural biodeg-
radationin porousmedia. Thesegenerdly lead
to strongly coupled systemsof nonlinear partial
differentid equationsthat aredifficultto solve.
Anaytica solutionsfor thefull, coupled prob-
lemsare nonexistent, and numerical methods
have problemssuch asingabilitiesand artificid
diffuson. Hereweuse new methodsthat are
reliable, accurate, and efficient for thegiven
models. We apply the methodsto subsurface
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biobarrier formation. Without these methods,
resultsof numerical simulationsare of doubt-
ful vaue.

Inthisarticle, weuseanew Eulerian-
Lagrangian numerical schemethat efficiently
handlesthenumericaly difficult convection-
dominated transport problemswith nonlinear
reactionterms. The convection-reaction part of
atrangport equationisapproximated usng an
“exact” time-stepping scheme. Someof the
important features of the schemearethe
nonlocal modeing of nonlinear reactionsand the
more sophi sticated discretization of timederiva
tives. It enablesusto track sharp concentration
frontsmuch moreaccurately than with standard
numerica schemes. Having dedt with themost
difficult part of the problem, standard finite
differencesarewel| suitedfor solvingthe
remaining dispersonterm. Thismethod was
presented by K ojouharov and Chen (1999).

We comparetheresults obtained from
using our numerical simulator with someof the
experimental resultsfor short coresdone by
Cunninghamet a. (1991). Theresultscompare
very well, whichisavery good vaidation of the
model. Thesimulator can now beused asa
predictivetool to determinevaluesof param-
eterswhich aredifficult or impossibleto mea-
sure, and to hel p design experiments, field
studies, and actua biobarriers.

Theoutline of the paper isasfollows. In
the next section, thegoverning system of partia
differential equationsisformulated for atwo-
phase, two-speciesmixture. Insectionthree,
the non-standard numerical method for solving
thereactive solute transport problemin porous

mediaisgiven. Todemonstrate the perfor-
mance of the proposed method of solutionfor
themode and the effectivenessof biobarriers
for reducing the hydraulic conductivity, numeri-
cal resultsand comparisonswith experiments
arepresented in sectionfour. Inthelast section,
asummary of resultsispresented.

GOVERNING SYSTEM OF EQUATIONS

Consder athree-phase mixtureconsisting
of aliquid phase, asolid rock phase, and a
biofilm phase. Eventhoughthebiofilmcanbe
considered to be part of the solid phasg, itis
simpler totakeit asaseparate phase. Thefour
molecular species present in the porousme-
dium arethebiofilm-forming microbes, |abeled
M; the soluble contaminantsor nutrients, labeled
N; and the water and rock species. We assume
that interactionsin the system occur only be-
tweenthe microbial and nutrients species.
Furthermore, we assume that the microbes
areimmobile; i.e., they are attached to the
rock asbiofilm.

Thefundamenta equationfor trangent
groundwater flow of constant density can be
writteninthefollowing form (Allen, 1988):

oh_o0 ohd_ (fluidflow) (1)

ot oxo oxd f.
Thesnglefluid-flow equation (1) arisesfromthe
massbalancelaw

oh , ov 2)

_+_:f,
Ssat 0X

when we subgtitutefor the specific discharge
vector vusingtheDarcy’slaw
v=-k® ©)

h(x,t) denotesthe hydraulic head; Sisthe
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specific storage; K isthe saturated hydraulic
conductivity; and f(x,t) represent sourcesor
sinks. The specific dischargevector v(x,t),
called Darcy velocity, representsthe speed of
thewater.

Thetransport and reaction of nutrientsand
the growth of microbesaregoverned by a
sysemof partid differentia equations. Since
therock phase doesn’t change, we assumethat
the solid rock matrix isstationary and that the
diffuson of microbia and nutrient speciesinthe
solid phaseisnegligible. Thereforewecan
work only with theliquid and biofilm phasesas
folows

%((pM ou) =" (Bu: A) (microbes)

9 9 9 0. dp,0_
(d m)+&(VPN)-&ﬁDN EH—rN(m, A)-
(nutrients) (4)

Here p,i=M,N, representstheintrinsic
massdengity of microbesand nutrients, respec-
tively. For asingle-fluidflow, thequantity f is
thevolumefraction occupied by theliquid
divided by thevolumeof theliquid plusthe
volumeof thebiofilm; f, isthevolumeof the
biofilmagain divided by thevolumeof theliquid
and biofilm; D, (x,t) isthe hydrodynamic disper-
sion coefficient for thenutrients; andr, repre-
sentsthetotal rate at which speciesi ispro-
duced viareactionsand sources.

Thegrowthratesareusualy writtenin
termsof concentrationsand wewill do that too.
Themicrobia deathrateisassumedto be
proportiona tothe size of the biofilm popula-
tion. Therateof biofilm growthisgivenby the

following Monod kineticsreactions:

_ HyaxS
“(S)‘m’ (5)
wherep,, ., isthemaximum specific growth
rate; and K_isthat value of the concentration of
nutrients S(massof nutrients per unit of liquid
volume) wherethe specific growthrate (S
hashdf itsmaximumvaue(Baley and Ollis,
1986). We assumethat only the growth and
accumulation of biofilmin the pore spacescause
changesin the porous mediaproperties. Let X
bethe current biofilm concentration; then

- X

f
Pwm
isthenormalized biofilm concentration. It
followsthat thechangein porosity, for small

initid biofilm concentrations, isgiven by
0=g(1-X,),
where @, isthe clean surface porosity. For the

saturated hydraulic conductivity K weassume

thefollowingform:
K=K, (1-X,)" (6)

whereK  istheinitial hydraulic conductivity, and
n, isan experimentally determined parameter
whichtakesvauesaround 3 (Clement et dl.,
1996). For smplicity, from now onwewill
dropthetildefromthenormalized biofilm
concentration. We assumethereare no sources
and sinksfor thefluid; therefore, f=0. Alsowe
aremodeling very short coreswith uniform
biofilmdistribution sowe cantaketheveocity
to beindependent of x.

Invoking al amplifying assumptionsto
equations(4) and using concentrationsasthe
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unknownsgivesthefollowing fina form of the
governing systemof differentid equations:

@< OhD
(7)
%(Xf)z Kunf; X —k X,
0 0 oSO 1u.,S
(g o, B LSy
ot OEX(VS) ax OXH YK +S

wherek isthefirst-order endogenous decay
rate, and Yistheyieldrate coefficient.

NUMERICAL METHODSFOR
BIOFILM GROWTH

Equation (7) representsacoupled system
of nonlinear, time-dependent partid differentia
equationsthat isvery difficult to solve numeri-
caly. A key objectiveof thenumerica smula-
tionisto develop time-stepping proceduresthat
areaccurate and computationally stable. Differ-
ent time-stepping i deas can be applied to solve
thegoverning system of equations(Russdll and
Whedler, 1983). One possibletime-stepping
approachisthesequentia solutiontechnique.
Thesequentid method first solvesimplicitly for
theDarcy velocity v at the current timelevel by
solving thefluid flow equation (1). Thenthe
speciestransport system (4) issolvedimplicitly

for the concentrations Sand X inadecoupled

fashion (Ewingand Russeall, 1982). New
vauesof porosity and permesability arethen
calculated and the cycleisrepeated by calcul at-
ing the new vel ocities. For the solution of the
ordinary differential equation modeling theflow,
weuseastandard finite-difference method to
calculateh. Thenwenumerically differenti-
ateusing
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v=-xk (8)
ox’
toget thevelocity field.
Congder thefollowing reaction-diffuson-
advection equation governing reactive species
transport in porous media

aC ﬁDaCD (9)
at ax ax GXH

Here, cisthe speciesconcentration; visthe
velocity; and D isthe hydrodynamic dispersion
tensor. Sincevisindependent of x, thenonlin-
ear reaction term R(c) hasthe expression

R(c)=r(c), (10)
wherer(C) representsthetotal rate at whichthe
speciesisproduced viareactionsand sources.
Unfortunately, thereareonly few casesfor
which anaytic solutionsto the solute transport
equation (9) exist. Theform of equation (9)
rangesfrom parabolicto aimost hyperbolic,
depending on theratio of convectionto disper-
sion. Whileclassica numerical techniques, such
asthestandardfinite-differencesor Gaerkin
finite-elements, work well for problemsof solute
transport that are dominated by dispersive
movement, they suffer from severenonphysica
oscillationsand excessvenumerical disperson
when convection dominatesthedispersve
effects. Solutionsof hyperbolic-typeequations
can berepresented from theinitial datapropa-
gating over characteristic pathsin the surface
and can beviewed asdispersing away from
these paths, aong which the concentrationcisa
smooth function (Douglasand Russall, 1982).
Therefore, itislogicd todesgnnumericd
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proceduresthat recognizethe hyperbolic nature
of the convection-dominated sol ute transport
problems, such asthe Eulerian-Lagrangian
methods. Inrecent years, many such schemes
have been devel oped but still little hasbeen
donetoimprovethenumerica solutionsof
problemsinwhich nonlinear reactionsare
present. Nonlinear reactiontermsplay a
ggnificantrolein gpplicationsinvolving bacterid
growth and contaminant biodegradationin
subsurfaceregions.

Referring to Kojouharov and Chen
(1999), we proposed anew Eulerian-
Lagrangian numerical method for solvingthe
reactive solutetransport equation (9). The
numerical solution of the convection-reaction
partisdefined using an*exact” time-stepping
scheme. Thisenablesusto follow thetransport
and track sharp frontsmuch more accurately
than with the standard numerical schemes.
Having dedlt with themost difficult part of the
transport problem (9), only the smoothing
property of thedispersontermremains. Then,
sandardfinitedifferencesor finiteelementsare
well suited for solving thedispersion part.

We now apply the new method to the
following disperson-freesystem of differentia
equations.

oX
a_tfzil:m;issxf -k X;, (microbes)

s 11
0S . 0S_ 1 pu._S - w
E-l-v&__VK +SXf. (nutrients)

Themicrobesequationisalinear first
order ordinary differential equationwhose
“exact solution” isgiven by

X (%)= X7 (xm)

S CATX() @
/\m
Whae /\m —_ l'lmaxSm (X) _k

- (KS + S”‘(x)) a
The*"exact” time-stepping schemefor

solving the nutrientstransport equation from

system (11) isgiven by theexpression

Sm+l_Sm -m [am+ O]
(X ):/\m_&lnms (X)D, (13)

At At s (xm)E

X m+1
M , and the back-

where A™ = -

track point X™ hasthe expression

X" =x-FPR, ((m+1) &t) =P, (mat)d,

for constant in space, time-dependent vel ocity
fields: v(t)=P_,(1).
We now add adiffusiontermto the
trangport equation for thefollowing nutrients:
0,38 00 B0 LimSy,
ot ox oxd Moxd YK +S
(14)
Applyingthe* exact” time-stepping scheme (13)
toequation (14) yiddsthefollowingimplicitin
nature, semi-discrete procedure:

s™(x)-S"(X") 8 O_,.,08™ (x)0_
At oxpg © OX S_
[Nem+1 ]
/\m—&lnDiS (X)D (15)

A s (x7)H
To compl etethe construction of the new

Eulerian-Lagrangian method for solving equation
(14), weneed to introduce an approximation
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techniquefor discretizing the spatid derivatives
involvedinthedispersonterm. Let usconsider
thefollowing centered, weighted second differ-
enceagpproximation (Huyakorn and Pinder,
1983):

m+1 aSm+l ( ) m+1 m+l) —
— Dy 0,5 )=
) ED ) 5 O ( N )

D m+l ( STIl Sm+1) -D I\Ti ( Sm a1 _ ST1+1)
X

(16)

where

'+ X .. [ [l
prt =D, BXF Xal (m+1) At 1
v =B 5 (m+1) u 17)
isthe hydrodynamic dispersion coefficient
located at the center of aspaceincrement, and
Axisthegpatia gridsize.
Combining the semi-discrete procedure
(15) with the above spatia approximation of the
dispersontermyiedsthe non-standard differ-
encemethod for solving equation (14):
m+l _ Sm vl
S ()ﬂ ) _5¥ (Dlr\ln+15xsm+l)i =
EI Sm+l
iy vall B =y O
s ()
where -
Am = _Hma X4
Y

and the backtrack point x™ hasthe expression
X" =x ~fR ((m+1) &) -R, (mar)

Remark.- Ingeneral, the* backtrack” point X™
doesnot lieat agrid point. If the approximate
solution Sisbeing determined by afinite-
difference procedure, the convective concentra-
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tion gm (xm) must be evaluated by an
interpolation of the gpproximate solution values
{S"atthegrid pointsx.

NUMERICAL RESULTS

We now turn to aset of numerical experi-
mentsto demonstrate the performance of the
proposed new method and the effectiveness of
microbia barriersfor reducingthehydraulic
conductivity property of porousmedia. The
governing system of equationsexamined here
hasthefollowingform:

%ahm_ __K@ (fluidflow)
ox OXH
0X .
f :Mg(xf)x X, (microbes)
ot K,+S
s, 05 __ 'S _ |
at ax Nl (nutrients)
1 4,.,S
_VEG(Xf)Xf! (19)
where 1-x
G(Xf):—f,
1-X, +y

with ¥ typicaly small, isintroduced to restrict
the growth of the microbesasthe poresare
being plugged. histhehydraulic head; X isthe
normalized biofilm concentration; and Sisthe
nutrientsconcentration. Thenon-dimensiona
spatial domain considered hereisQ=[0,1].
Assumptionsmadein theabove math-
ematical model (20) arethat dl bacteriaare
attached to the solid rock surface asapart of
thebiofilm structure and that the concentration
of nutrients present inthe solid phaseisnegli-
gible. Changesinthehydraulic conductivity K
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are caused by the accumulation of solid-phase
biomassin the pore spaces. We assumea
piecewise steady-state fluid flow, dueto the
relatively dow changesinthe porousmedia
properties(Cunninghamet a., 1991). The
biofilm concentration-porogity relationusedis

(p:qg(l—xf). (20)

Thisformulaisvaidfor smal initid biofilm
concentrationswhichisthecaseintheexamples
that wedo. Theconductivity-reductionrela
tionship examined hereisgiven by thefollowing
expresson:

K=Ky (1-X, ). (21)
We smulatetwo of the experimentsdone by
Cunninghamet a. (1991): theonesfor .70mm
and .54mm sands. Theexperimenta vauesare

asfollows:

* For.70mm sand: permeability k=3.19x10°
cm?, i.e., hydraulic conductivity K
=.2404 cm/sfor water at 15°C.

e For .54mmsand: k=2.17x10%cm?, i.e.,
K=.1635 cm/s.

For both sands, theinitia porosity is ¢=0.35
andthereactor’slengthis5cm, whichwas
scaledto 1 for thecdculations. Theboundary
andinitia conditionsconsideredinthemodd in
agreement with Cunninghamet al. (1991) areas
folows

S(0,t) =S=25mg/L (thenumerical
resultswere scaled by afactor of 50, s.t.
S=0.5for cal culation and graphing purposes),

h(0,t)=0.5cm, h(1,t)=0cm, i.e., head
gradient =0.5cm/cm,

Sx,0)= 0.5, and Xf(x,0) = 0.02.

Thefollowing reaction parametersare
taken from Taylor and Jaffe (1990):
M, = 0.0001041/s,

K=0.799 mg/L and

Y=0.0975.

Other parametersused areasfollows:

k =0.00007161/s, which was obtained
from cdibrating themodd, and

D,=0.0005 cnm?/s(Themodel hasavery
low sengitivity tothisparameter.).

Thefigurespresent theresultsof our
calculation, together with some of the experi-
mental valuesshownin Figures5and 8from
Cunninghamet al. (1991). We use concentra-
tionsinstead of biofilmthicknesssincewe
cannot ca culate the thicknesswithout making
assumptionson thedistribution of microbes.
But, itisreasonableto assumethat thereisa
linear rel ation between biofilm thicknessand
microbia concentration.

Figure 1 showsthevariation of thenormal-
ized porosity with thenormalized biofilm con-
centration. X, isthemaximumvalueof the
microbia concentration, and theA and *
symbolsrepresent someexperimenta results.

Figure2isaplot of thepermesbility
decreaseand theincreaseinthemicrobia
concentrationwithtime. Inour resultsthe
normalized biomassgoesto 1 in about 2 days,
thesametimeit takesthe normalized permesbil-
ity to decreaseto about 0.1. InFigure5
(Cunninghamet al., 1991), the permesbility also
decaysto 0.1 in about 2 days, but the normal-
ized biofilm thicknesstakesabout 6 daysto
tendto 1. Thedifferenceisduetotheaverag-
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Figurel. Variationinsmulated normalized
mediaporosity with normalized biofilm con-
centration. Thetrianglesand the starsrepre-
sent the experimental valuesfor .70 mm and
.54 mm sands, respectively, from Cunningham
etal., 1991.

ing of thebiofilm thicknessdone by
Cunninghamet a. (1991), where the dominant
component isfor 1mm glass spheres (which
weare not modeling).

Figure 3 showsthegrowth of biomass
together withthe decreasein nutrients. The
amount of biomass reaches amaximum
steady state at about 2 days, which coincides
withthetimeit takesfor the nutrientsto reach
their minimum.

CONCLUSIONS

A new classof numerical methods has
been devel oped for solving one-dimensional,
transient convective-dispersivetransport
equationswith nonlinear reactions. Largetime
steps can be taken without affecting the accu-
racy of thenumerical solution. Theappropri-
atetime-step sizefor aparticular model
problem can be determined by physical
considerations, rather than stability, conver-

== R v
ik
ma
—0.70mrh Sand
~--0;64mm Sand’

o e * o

Time (days)
Figure 2. Normalized porous mediapermeabil-
ity decrease corresponding to increased normal-
ized microbia concentration versustime. The
microbial concentration curveistheaveragefor
both types of sand. Thetrianglesand the stars
represent experimental permeability vauesfor
.70mm sandsand .54 mm sands, respectively,
from Cunninghamet d., 1991.

gence, or consistency reasons.

The proposed new methods have been
successfully appliedto biobarrier formation
model sincorporating M onod kineticsreactions.
Numerical resultsconfirmed thetheoretical and
experimental predictionsthat microbial barriers
areeffectivefor manipulating the porousmedia
propertiesin general, and for reducing the
hydraulic conductivity in particular. Theagree-
ment isvery good and showsthat the model can
reproduce experimentd resultsand inthefuture
beused asapredictivetool. However, the
curvesinFigure 1 arecloser together thanthe
corresponding experimental ones. Onereason
isthat weare plotting biomass concentrations
instead of biofilmthickness. Another possible
reasonisthat wetook all the bacteriato bein
biofilm form with no sgnificant detachment, so
all thebiomassreducesthe porosity and perme-
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Figure3. Increaseinmicrobia concentration

and decrease of normalized nutrient concentra-
tionwithtime.

ability. Inpracticethereisdetachment andthe
free- floating microbeswill not changethe
physical propertiesof themedium. Also, for the
.54 mm sand, the pore channelsaresmaller and
thevelocitieshigher, whichwouldincreasethe
detachment in thiscase and add to the separa
tion of the curves.
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