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ABSTRACT
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Biofilm-forming microbes can form biobarriers to inhibit contaminant migration in groundwater.  Also
subsurface biofilms have the potential for biotransformation of organic contaminants to less harmful forms,
thereby providing an in situ method for treatment of contaminated groundwater supplies.  We present a
mathematical and numerical model to describe the population distribution and growth of bacteria in porous
media.  The model is based on the convection-dispersion equation with nonlinear reaction terms.  Accurate
numerical simulations are crucial to the development of contaminant remediation strategies.  We use the
nonstandard numerical approach that is based on nonlocal treatment of nonlinear reactions and modified
characteristic derivatives.  It leads to significant, qualitative improvements in the behavior of the numerical
solution.  Numerical results for a simple biobarrier formation model are presented to demonstrate the perfor-
mance of the proposed new method.  We show comparisons with experimental results obtained from Montana
State’s Center for Biofilm Engineering.

INTRODUCTION

Controlling pollution in underground water

is a very important and difficult problem.  There

are bacteria that will destroy many organic

contaminants in subsurface regions.  But for

most pollutants, including heavy metals, a more

promising concept is the creation of biobarriers

for containment and remediation of contami-

nated soil and groundwater.  Biobarriers are in

situ barriers that are formed by stimulating the

growth of biofilm-forming microbes that are

already present or  are introduced into the

aquifer.  As the microbial  biomass increases it

plugs the free pore space flow paths through

porous media, thereby reducing the hydraulic

conductivity and mass transport properties

(Cunningham et al., 1991).    By  adequately

choosing where to plug the porous medium, it is

possible to prevent the migration of groundwa-

ter contaminants from hazardous waste sites.

An even better scenario is to have biobarriers

that will not only contain the contaminant plume

but will also degrade it.

Mathematical models are needed to

complement experimental work into the use of

biofilms to form biobarriers.  Mathematical

models help to explain  the mechanisms for flow,

solute transport, biological and chemical reac-

tions, biofilm accumulation, and natural biodeg-

radation in porous media.  These generally lead

to strongly coupled systems of nonlinear partial

differential equations that are difficult to solve.

Analytical solutions for the full, coupled prob-

lems are nonexistent, and numerical methods

have problems such as instabilities and artificial

diffusion.  Here we use new methods that are

reliable, accurate, and efficient for the given

models.  We apply the methods to subsurface
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biobarrier formation.  Without these methods,

results of numerical simulations are of doubt-

ful value.

In this article, we use a new Eulerian-

Lagrangian numerical scheme that efficiently

handles the numerically difficult convection-

dominated transport problems with nonlinear

reaction terms.  The convection-reaction part of

a transport equation is approximated using an

“exact” time-stepping scheme.  Some of the

important features of the scheme are the

nonlocal modeling of nonlinear reactions and the

more sophisticated discretization of time deriva-

tives.  It enables us to track sharp concentration

fronts much more accurately than with standard

numerical schemes.  Having dealt with the most

difficult part of the problem, standard finite

differences are well suited for solving the

remaining dispersion term.  This method was

presented by Kojouharov and Chen (1999).

We compare the results obtained from

using our numerical simulator with some of the

experimental results for short cores done by

Cunningham et al. (1991).  The results compare

very well, which is a very good validation of the

model.  The simulator can now be used as a

predictive tool to determine values of param-

eters which are difficult or impossible to mea-

sure, and to help design experiments, field

studies, and actual biobarriers.

The outline of the paper is as follows. In

the next section, the governing system of partial

differential equations is formulated for a two-

phase, two-species mixture.  In section three,

the non-standard numerical method for solving

the reactive solute transport problem in porous

media is given.  To demonstrate the perfor-

mance of the proposed method of solution for

the model and the effectiveness of biobarriers

for reducing the hydraulic conductivity, numeri-

cal results and comparisons with experiments

are presented in section four.  In the last section,

a summary of results is presented.

GOVERNING SYSTEM OF EQUATIONS

Consider a three-phase mixture consisting

of a liquid phase, a solid rock phase, and a

biofilm phase.  Even though the biofilm can be

considered to be part of the solid phase, it is

simpler to take it as a separate phase.  The four

molecular species  present in the porous me-

dium are the biofilm-forming microbes, labeled

M; the soluble contaminants or nutrients, labeled

N; and the water and rock species.  We assume

that interactions in the system occur only be-

tween the microbial and nutrients species.

Furthermore, we assume that the microbes

are immobile; i.e., they are attached to the

rock as biofilm.

The fundamental equation for transient

groundwater flow of constant density can be

written in the following form (Allen, 1988):

The single fluid-flow equation (1) arises from the

mass balance law

when we substitute for the specific discharge

vector v using the Darcy’s law

h(x,t) denotes the hydraulic head; S
s 
is the

.S
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specific storage; K is the saturated hydraulic

conductivity; and f(x,t) represent sources or

sinks.  The specific discharge vector v(x,t),

called Darcy velocity, represents the speed of

the water.

The transport and reaction of nutrients and

the growth of microbes are governed by a

system of partial differential equations.  Since

the rock phase doesn’t change, we assume that

the solid rock matrix is stationary and that the

diffusion of microbial and nutrient species in the

solid phase is negligible.  Therefore we can

work only with the liquid and biofilm phases as

follows:

Here ρ
i
, i=M,N, represents the intrinsic

mass density of microbes and nutrients, respec-

tively.  For a single-fluid flow, the quantity f
N 
is

the volume fraction occupied by the liquid

divided by the volume of the liquid plus the

volume of the biofilm; f
M
is the volume of the

biofilm again divided by the volume of the liquid

and biofilm; D
N
(x,t) is the hydrodynamic disper-

sion coefficient for the nutrients; and r
i
 repre-

sents the total rate at which species i is pro-

duced via reactions and sources.

The growth rates are usually written in

terms of concentrations and we will do that too.

The microbial death rate is assumed to be

proportional to the size of the biofilm popula-

tion.  The rate of biofilm growth is given by the

following Monod kinetics reactions:

where µ
MAX

  is the maximum specific growth

rate; and K
s
 is that value of the concentration of

nutrients S (mass of nutrients per unit of liquid

volume) where the specific growth rate µ (S)

has half its maximum value (Bailey and Ollis,

1986).  We assume that only the growth and

accumulation of biofilm in the pore spaces cause

changes in the porous media properties.  Let X
f

be the current biofilm concentration; then

is the normalized biofilm concentration.  It

follows that  the change in porosity, for small

initial  biofilm concentrations, is given by

where φ
0
 is the clean surface porosity. For the

saturated hydraulic conductivity K we assume

the following form:

where K
0
 is the initial hydraulic conductivity, and

n
k
 is an experimentally determined parameter

which takes values around 3 (Clement et al.,

1996).  For simplicity, from now on we will

drop the tilde from the normalized biofilm

concentration.  We assume there are no sources

and sinks for the fluid; therefore, f=0.  Also we

are modeling very short cores with uniform

biofilm distribution so we can take the velocity

to be independent of x.

Invoking all simplifying assumptions to

equations (4) and using concentrations as the

( ) ( ),M M M M Nr
t

φ ρ ρ ρ∂ =
∂

( ) ( ) ( ), .N
N N N N N M Nv D r
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unknowns gives the following final form of the

governing system of differential equations:

where k
r
 is the first-order endogenous decay

rate, and Y is the yield rate coefficient.

NUMERICAL METHODS FOR
BIOFILM GROWTH

Equation (7) represents a coupled system

of nonlinear, time-dependent partial differential

equations that is very difficult to solve numeri-

cally.  A key objective of the numerical simula-

tion is to develop time-stepping procedures that

are accurate and computationally stable.  Differ-

ent time-stepping ideas can be applied to solve

the governing system of equations (Russell and

Wheeler, 1983).  One possible time-stepping

approach is the sequential solution technique.

The sequential method first solves implicitly for

the Darcy velocity v at the current time level by

solving the fluid flow equation (1).  Then the

species transport system (4) is solved implicitly

for the concentrations S and X
f
 in a decoupled

fashion  (Ewing and Russell, 1982).  New

values of porosity and permeability are then

calculated and the cycle is repeated by calculat-

ing the new velocities. For the solution of the

ordinary differential equation modeling the flow,

we use a standard finite-difference method to

calculate h.  Then we numerically differenti-

ate using

to get the velocity field.

Consider the following reaction-diffusion-

advection  equation governing reactive species

transport in porous media:

Here, c is the species concentration; v is the

velocity; and D is the hydrodynamic dispersion

tensor.  Since v is independent of x, the nonlin-

ear reaction term R(c) has the expression

where r(c) represents the total rate at which the

species is produced via reactions and sources.

Unfortunately, there are only few cases for

which analytic solutions to the solute transport

equation (9) exist.  The form of equation (9)

ranges from parabolic to almost hyperbolic,

depending on the ratio of convection to disper-

sion.  While classical numerical techniques, such

as the standard finite-differences or Galerkin

finite-elements, work well for problems of solute

transport that are dominated by dispersive

movement, they suffer from severe nonphysical

oscillations and excessive numerical dispersion

when convection dominates the dispersive

effects.  Solutions of hyperbolic-type equations

can be represented from the initial data propa-

gating over characteristic paths in the surface

and can be viewed as dispersing away from

these paths, along which the concentration c is a

smooth function (Douglas and Russell, 1982).

Therefore, it is logical to design numerical
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procedures that recognize the hyperbolic nature

of the convection-dominated solute transport

problems, such as the Eulerian-Lagrangian

methods.  In recent years, many such schemes

have been developed but still little has been

done to improve the numerical solutions of

problems in which nonlinear reactions are

present.  Nonlinear reaction terms play a

significant role in applications involving bacterial

growth and contaminant biodegradation in

subsurface regions.

Referring to Kojouharov and Chen

(1999), we proposed a new Eulerian-

Lagrangian numerical method for solving the

reactive solute transport equation (9).  The

numerical solution of the convection-reaction

part is defined using an “exact” time-stepping

scheme.  This enables us to follow the transport

and track sharp fronts much more accurately

than with the standard numerical schemes.

Having dealt with the most difficult part of the

transport problem (9), only the smoothing

property of the dispersion term remains.  Then,

standard finite differences or finite elements are

well suited for solving the dispersion part.

We now apply the new method to the

following dispersion-free system of differential

equations:

The microbes equation is a linear first

order ordinary differential equation whose

“exact solution” is given by

where

The “exact” time-stepping scheme for

solving the nutrients transport equation from

system (11) is given by the expression

where                                      , and the back-

track point          has the expression

for constant in space, time-dependent velocity

fields: v(t)=P
n-1

(t).

We now add a diffusion term to the

transport equation for the following nutrients:

Applying the “exact” time-stepping scheme (13)

to equation (14) yields the following implicit in

nature, semi-discrete procedure:

To complete the construction of the new

Eulerian-Lagrangian method for solving equation

(14), we need to introduce an approximation

max
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technique for discretizing the spatial derivatives

involved in the dispersion term.  Let us consider

the following centered, weighted second differ-

ence approximation (Huyakorn and Pinder,

1983):

where

is the hydrodynamic dispersion coefficient

located at the center of a space increment, and

∆x is the spatial grid size.

Combining the semi-discrete procedure

(15) with the above spatial approximation of the

dispersion term yields the non-standard differ-

ence method for solving equation (14):

where

and the backtrack point         has the expression

Remark.- In general, the “backtrack” point

does not lie at a grid point.  If the approximate

solution S is being determined by a finite-

difference procedure, the convective concentra-

tion                   must be evaluated by an

interpolation of the approximate solution values

{S
i
m}at the grid points x

i
.

NUMERICAL RESULTS

We now turn to a set of numerical experi-

ments to demonstrate the performance of the

proposed new method and the effectiveness of

microbial barriers for reducing the hydraulic

conductivity property of porous media.  The

governing system of equations examined here

has the following form:

where

with     typically small, is introduced to restrict

the growth of the microbes as the pores are

being plugged.  h is the hydraulic head; X
f
 is the

normalized biofilm concentration; and S is the

nutrients concentration.  The non-dimensional

spatial domain considered here is Ω= [0,1].
Assumptions made in the above math-

ematical model (20) are that all bacteria are

attached to the solid rock surface as a part of

the biofilm structure and that the concentration

of nutrients present in the solid phase is negli-

gible.  Changes in the hydraulic conductivity K
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are caused by the accumulation of solid-phase

biomass in the pore spaces.  We assume a

piecewise steady-state fluid flow, due to the

relatively slow changes in the porous media

properties (Cunningham et al., 1991). The

biofilm concentration-porosity relation used is

This formula is valid for small initial biofilm

concentrations which is the case in the examples

that we do.  The conductivity-reduction rela-

tionship examined here is given by the following

expression:

We simulate two of the experiments done by

Cunningham et al. (1991):  the ones for .70 mm

and .54mm sands. The experimental values are

as follows:
• For .70mm sand: permeability k =3.19x10-6

cm2, i.e., hydraulic conductivity K
=.2404 cm/s for water at 15°C.

• For .54mm sand: k =2.17x10-6 cm2, i.e.,
K=.1635 cm/s.

For both sands, the initial porosity is φ
0
=0.35

and the reactor’s length is 5 cm, which was

scaled to 1 for the calculations. The boundary

and initial conditions considered in the model in

agreement with Cunningham et al. (1991) are as

follows:

S(0,t) = S0= 25 mg/L  (the numerical

results were scaled by a factor of 50, s.t.

S0=0.5 for calculation and graphing purposes),

h(0,t)=0.5 cm , h(1,t)=0 cm, i.e.,  head

gradient =0.5 cm/cm,

S(x,0)= 0.5, and Xf(x,0) =  0.02.

The following reaction parameters are

taken from Taylor and Jaffe (1990):

µ
max

 = 0.0001041/s,

K
s
=0.799 mg/L and

Y=0.0975.

Other parameters used are as follows:

k
r
=0.00007161/s, which was obtained

from calibrating the model, and

D
N
=0.0005 cm2/s (The model has a very

low sensitivity to this parameter.).

The figures present the results of our

calculation, together with some of the experi-

mental values shown in Figures 5 and 8 from

Cunningham et al. (1991).  We use concentra-

tions instead of biofilm thickness since we

cannot calculate the thickness without making

assumptions on the distribution of microbes.

But, it is reasonable to assume that there is a

linear relation between biofilm thickness and

microbial concentration.

Figure 1 shows the variation of the normal-

ized porosity with the normalized biofilm con-

centration.  X
f max

 is the maximum value of the

microbial concentration, and the ∆ and *

symbols represent some experimental results.

Figure 2 is a plot of the permeability

decrease and the increase in the microbial

concentration with time.  In our results,the

normalized biomass goes to 1 in about 2 days,

the same time it takes the normalized permeabil-

ity to decrease to about 0.1.  In Figure 5

(Cunningham et al., 1991), the permeability also

decays to 0.1 in about 2 days, but the normal-

ized biofilm thickness takes about 6 days to

tend to 1.  The difference is due to the averag-

( )0 1 .fXφ φ= −       (20)

( )3

0 1 .fK K X= −       (21)
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ing of the biofilm thickness done by

Cunningham et al. (1991), where the dominant

component is for 1mm glass spheres (which

we are not modeling).

Figure 3 shows the growth of biomass

together with the decrease in nutrients. The

amount of biomass reaches a maximum

steady state at about 2 days, which coincides

with the time it takes for the nutrients to reach

their minimum.

CONCLUSIONS

A new class of numerical methods has

been developed for solving one-dimensional,

transient convective-dispersive transport

equations with nonlinear reactions.  Large time

steps can be taken without affecting the accu-

racy of the numerical solution.  The appropri-

ate time-step size for a particular model

problem can be determined by physical

considerations, rather than stability, conver-

gence, or consistency reasons.

The proposed new methods have been

successfully applied to biobarrier formation

models incorporating Monod kinetics reactions.

Numerical results confirmed the theoretical and

experimental predictions that microbial barriers

are effective for manipulating the porous media

properties in general, and for reducing the

hydraulic conductivity in particular.  The agree-

ment is very good and shows that the model can

reproduce experimental results and in the future

be used as a predictive tool.  However, the

curves in Figure 1 are closer together than the

corresponding experimental ones.  One reason

is that we are plotting biomass concentrations

instead of biofilm thickness.  Another  possible

reason is that we took all the bacteria to be in

biofilm form with no significant detachment,  so

all the biomass reduces the porosity and perme-

Figure 1.  Variation in simulated  normalized
media porosity  with normalized biofilm con-
centration.  The triangles and the stars repre-
sent the experimental values for .70 mm and
.54 mm sands, respectively, from Cunningham
et al., 1991.

Figure 2. Normalized porous media permeabil-
ity decrease corresponding to increased normal-
ized microbial concentration versus time. The
microbial concentration curve is the average for
both types of sand. The triangles and the stars
represent experimental permeability values for
.70mm sands and .54 mm sands, respectively,
from Cunningham et al., 1991.
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ability.  In practice there is detachment and the

free- floating microbes will not change the

physical properties of the medium.  Also, for the

.54 mm sand, the pore channels are smaller and

the velocities higher, which would increase the

detachment in this case and add to the separa-

tion of the curves.

ACKNOWLEDGMENTS

The Department of Mathematics, Univer-

sity of Wyoming,  and the Great Plains/Rocky

Mountain Hazardous Substance Research

Center are acknowledged for financial support.

Although this article has been funded in

part by the U.S. Environmental Protection

Agency under assistance agreement R-819653,

through the Great Plains/Rocky Mountain

Hazardous Substance Research Center, it has

not been subjected to the agency’s peer and

administrative review and, therefore, may not

necessarily reflect the views of the agency. No

official endorsement should be inferred.

REFERENCES
Allen, M. B., 1988. “Basic Mmechanics of Oil

Reservoir  Flows,” Multiphase Flow in
Porous Media, M. B. Allen III, G. A.
Behie, and J. A. Trangenstein, Lecture
Notes in Engineering 34, C. A. Brebia
and S. A. Orszag, Eds., Springer-
Verlag, New York, pp. 1-81.

Bailey, J. E., and D. F. Ollis, 1986.  Biochemi-
cal Engineering Fundamentals,
McGraw-Hill, Inc., NY.

Characklis, W. G., and K. C. Marshall,
1990.  Biofilms, John Wiley and
Sons, Inc., NY.

Clement, T. P., B. S. Hooker, and R. S. Skeen,
1996.  “Microscopic Models for
Predicting Changes in Saturated Porous
Media Properties Caused by Microbial
Growth,” Ground Water, 34:5, pp.
934-942.

Cunningham, A. B., W. G. Characklis, F.
Abedeen, and D. Crawford, 1991.
“Influence of the Biofilm Accumulation
on Porous Media Hydrodynamics,”
Environ. Sci. Technol., 25:7, pp.
1305-1311.

Douglas, J. Jr., and T. F. Russell, 1982. “Nu-
merical Methods for
Convection-Dominated Diffusion
Problems Based on Combining the
Method of Characteristics with Finite
Element or Finite Difference Proce-
dures,” SIAM J. Numer. Anal., 19, pp.
871-885.

Ewing, R. E., and T. F. Russell, 1982.  “Efficient
Time-Stepping Methods for Miscible
Displacement Problems in Porous
Media,”  SIAM J. Numer. Anal., 19,
pp. 1-66.

Figure 3.  Increase in microbial concentration
and decrease of normalized nutrient concentra-
tion with time.



Proceedings of the 2000 Conference on Hazardous Waste Research 237

Huyakorn, P. S., and G. F. Pinder, 1983.
Computational Methods in Subsur-
face Flow, Academic Press, NY.

Kojouharov, H. V., and B. M. Chen, 1999.
“Non-Standard Methods for the
Convective-Dispersive Transport
Equation with Nonlinear Reactions,”
Numer. Methods Partial Differential
Equations, 15, pp. 617-624.

Russell, T. F., and M. F. Wheeler, 1983.
“Finite Element and Finite Difference

Methods for Continuous Flows in
Porous Media,” Frontiers in Applied
Mathematics, Vol. 1: The Mathemat-
ics of Reservoir Simulation, R.E.
Ewing, Ed., SIAM, Philadelphia, pp.
35-106.

Taylor, S.W., and P.R. Jaffe, 1990.  “Substrate
and Biomass Transport in a Porous
Medium,” Water Resources Research,
26, pp. 2181-2194.


