Top reasons to choose electrical engineering as your major

- Award-winning faculty and staff, along with outstanding undergraduate and graduate students, make up the most widely recognized and sought-after electrical and computer engineering program in the state.

- Small in-major classes are taught by professors — not teaching assistants. Many of our junior- and senior-level design courses have enrollments of fewer than 20 students, allowing for a family-like atmosphere and individualized attention.

- Our program offers an exceptional career outlook with industry demand outweighing the supply of our graduates. Most of our students have completed internships and signed full-time contracts before graduation.

- If you have a desire to understand how the electronic world in which we live operates, then a degree in electrical engineering may be for you. Electrical engineers are the enablers of many modern technologies such as mobile phones, the Internet, electric cars, renewable energies and the smart grid, and wearable fitness and medical devices.

- Hands-on, laboratory-based approach to our curriculum ensures students are well versed in project development and problem solving as well as ready to meet the challenges of working beyond graduation.

- Challenging course work and projects, along with opportunities to become involved in research, student organizations and design teams, add up to a great career outlook and investment in this “once-in-a-lifetime experience.”
Program overview

- Electrical and computer engineers (ECEs) design and develop the latest cutting-edge electronic and software-based solutions meeting the demands of the commercial, health care, academic and defense industries. ECEs use computers, electronics, mathematics, physics, engineering and problem-solving skills to create the most complex systems on Earth to help make our world a better and more exciting place.

- Electrical engineers are not electricians; they do not install or repair power lines. Instead, they study the foundations of circuit theory, electronics and electromagnetics. They design complex electronic networks, called circuits, which carry out specific tasks such as wireless communications, integrated circuits, audio amplifiers/processors, biological instrumentation, control systems, high-speed digital systems and smart power distribution/load sharing networks.

- Electrical engineering graduates are in high demand not only in Kansas and the Midwest, but nationally and internationally. Most graduates of the program have had at least one internship and have full-time employment secured prior to graduation.

- The electrical engineering degree program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.
Why electrical engineering at K-State?

Areas of specialization

- Bioengineering
- Communication systems and signal processing
- Digital electronics
- Integrated circuits and devices
- Power systems

Numbers that count

- Average starting salary: $60,753
- Enrollment: 257
- Faculty: 21
Student experience

- Small in-major classes taught by award-winning faculty who combine classical theory with real-world applications and projects, provide students a deep understanding and experience necessary to become successful engineers.
- Up-to-date lab facilities enhance and reinforce key theories taught in the classroom, and provide skills required for a career in electrical engineering.
- Opportunities abound for involvement in cutting-edge research, student organizations and design competition teams.
- A family-like atmosphere starts with faculty and staff, and extends to our students with many first-name-basis relationships.
- An exceptional career outlook with many internship and full-time opportunities are degree trademarks.

Major employers

- Aeroflex
- Bettis Labs
- Black & Veatch
- Burns & McDonnell
- Cerner
- EN Engineering
- Garmin
- GE
- General Dynamics
- Google
- Halliburton
- Honeywell
- Intel
- Kiewit
- Koch
- Lockheed Martin
- Microsoft
- NASA
- National Instruments
- Nebraska Public Power District
- Northrop Grumman
- Novatech
- Omah Power District
- Qualcomm
- Sprint
- Sunflower Electric Power
- Textron
- Westar
- And many more

Student organizations and design teams

- Amateur Radio Club
- Electronics Club
- Eta Kappa Nu Honor Society
- IEEE Engineering in Medicine and Biology Society
- IEEE Power and Energy Society
- IEEE Student Chapter
- Robotics Team
- Wind-Turbine Design Team
- Women in ECE