COLLEGE OF ENGINEERING
COURSE AND CURRICULUM CHANGES

To be considered at the College of Engineering
Course and Curriculum Meeting

March 26, 2015
Edwards Conference Room

9:00

Undergraduate/Graduate

EXPEDITED

Contact Person: James Goddard
532-3569
e-mail: goddard@ksu.edu
Units that may be directly impacted by these changes:

Agriculture Economics, Math Department, Business Admin Pre-Professional Program,
Management Information Systems, Statistics,

Please provide the sponsors of a proposal change with any information regarding fiscal or
programmatic impact on your department, program or students
Architectural Engineering and Construction Science and Management

From:

CNS 210 - Graphic Communication I
Credits: (1)

Introduction to graphic communication and methods using orthographic projections, isometrics, and perspective drawings and sketches and their application to the engineering, design, and construction industry.

Note
One hour recitation and two hours lab per week.

Requisites
Prerequisite or concurrent enrollment: CNS 220

When Offered
Fall, Spring

UGE course
No

K-State 8
None

To:

CNS 210 - Graphic Communication I
Credits: (1)

Introduction to graphic communication and methods using orthographic projections, isometrics, and perspective drawings and sketches and their application to the engineering, design, and construction industry.

Note
Two hours lab per week.

Requisites
Prerequisite or concurrent enrollment: CNS 220

When Offered
Fall, Spring

UGE course
K-State 8
None

Impact: None

Rationale: The course was taught under a topics class number for the first term of offering. It was determined that the 2 hours of lab per week was the best format to accomplish the goals of the course.

FROM: CNS 331 Strength of Materials and Analysis (3) I, II Study of behavior of materials subjected to tension, compressin, shear, and bending; analysis of beams and columns. Three hours recitation a week. Prerequisite: CNS 231 and Professional Program Standing in CNSM.

TO: CE 331 Strength of Materials and Analysis (3) I, II Study of behavior of materials subjected to tension, compressin, shear, and bending; analysis of beams and columns. Three hours recitation a week. Prerequisite: CNS 231.

Rationale: This course has been traditionally taught for the Construction Science and Management majors by Civil Engineering traditionally. The course proposal approved by the College of Engineering November 7, 2013 (approved by Faculty Senate February 2014) was to move it to the Department of Architectural Engineering and Construction Science with the other structural courses taught within the department, however, the course material currently needs to remain in the Civil Engineering Department to match the lab component.

Impact: None. This course has been taught by an Instructor whose time is split between Civil Engineering and the Department of Architectural Engineering and Construction Science. It is anticipated that this arrangement will continue for the foreseeable future.

Effective Date: Spring 2016

FROM: CNS 332 Strength of Materials A Laboratory (1) I, II Tests to determine the physical properties of various structural materials. Analysis and interpretation of test data. Three hours lab a week. Prerequisite or concurrent enrollment: CNS 331.

TO: CE 332 Strength of Materials A Laboratory (1) I, II Tests to determine the physical properties of various structural materials. Analysis and interpretation of test data. Three hours lab a week. Prerequisite or concurrent enrollment: CE 331.

Rationale: Same as CE 331 rationale.

Impact: This has been discussed with Civil Engineering. Both departments agree for scheduling and teaching of this class to continue to be taught by the Civil Engineering Department.

Effective Date: Spring 2016
Biological and Agricultural Engineering

From:
BAE 560. **Natural Resource Engineering I**. (3). II. Principles and measures for controlling storm water runoff and soil erosion including hydrology and surface water flow; design of water handling structures for land drainage, flood protection, and irrigation. Three hours recitation a week. Not available to students with credit for CE 550.

Credit: 3
Pre-requisite: STAT 490. Prerequisite or concurrent enrollment: ME 571.

To:
BAE 560. **Hydrology for Biological Systems** (3). II. Components of water cycle including precipitation, infiltration, evapotranspiration. Principles and measures for controlling storm water runoff and soil erosion including hydrology and surface water flow; design of water handling structures for land drainage, flood protection, and irrigation. Three hours recitation a week. Not available to students with credit for CE 550.

Credit: 3
Pre-requisite: Prerequisite or concurrent enrollment: ME 571 and STAT 490 or STAT 510.
Rationale: Adding more information on the hydrologic cycle based on advisory board and industry input. Renaming course to better reflect current material. STAT 490 has been replaced by STAT 510 in the new BSE program.

Impact: Potential impacts with Civil Engineering have been discussed and resolved.

Effective Date: Fall 2015

Chemical Engineering

FROM:

CHE 499 - Honors Research in Chemical Engineering

Credits: (1-18)

Individual research problem selected with approval of faculty advisor. Open to students in the College of Engineering honors program. A report is presented orally and in writing during the last semester.

Note
Repeatable.

When Offered
Fall, Spring

UGE course
No
TO:

CHE 499 - Honors Research in Chemical Engineering

Credits: (1-6)

Individual research problem selected with approval of faculty advisor. Open to students in the College of Engineering honors program. A report is presented orally and in writing during the last semester.

Note
Repeatable.

When Offered
Fall, Spring

UGE course
No

FROM:

CHE 520 - Chemical Engineering Thermodynamics I

Credits: (2)

A study of the first and second laws of thermodynamics, real gases, heat of solution and reaction.

Note
Two hours recitation a week.

Requisites
Prerequisite: CHE 320. Prerequisite or concurrent enrollment: MATH 240.

When Offered
Fall

UGE course
TO:

CHE 520 - Chemical Engineering Thermodynamics I

Credits: (2)

A study of the first and second laws of thermodynamics, real gases, heat of solution and reaction.

Note
Two hours recitation a week.

Requisites
Prerequisite: A grade of C or better in CHE 320. Prerequisite or concurrent enrollment: MATH 240.

When Offered
Fall

UGE course
No

K-State 8
None

FROM:

CHE 530 - Transport Phenomena I

Credits: (3)

A unified treatment of the basic principles of momentum, energy, and mass transport.

Note
Three hours recitation a week.

Requisites
Prerequisite: CHE 320 and MATH 240.

When Offered
Fall
TO:

CHE 530 - Transport Phenomena I

Credits: (3)

A unified treatment of the basic principles of momentum, energy, and mass transport.

Note
Three hours recitation a week.

Requisites
Prerequisite: A grade of C or better in CHE 320 and MATH 240.

When Offered
Fall

Expedited COURSE PROPOSALS
Courses Numbered 000-599

Biological and Agricultural Engineering

From: BAE 665. Ecological Engineering Design. (3). I. Definition, classification, and practice of ecological engineering. Course describes ecological systems, ecosystem restoration, and the utilization of natural processes to provide societal services and benefits to nature. Three hours recitation a week.

Credit: 3
Pre-requisite:	Prerequisite: MATH 221 and one of the following courses: BAE 560, CE 563, BIOL 529, BIOL 612, ATM 661.
To:	BAE 665. Ecological Engineering Design. (3). \textit{I, in odd years}. Definition, classification, and practice of ecological engineering. Course describes ecological systems, ecosystem restoration, and the utilization of natural processes to provide societal services and benefits to nature. Three hours recitation a week.
Credit:	3
Pre-requisite:	Prerequisite: MATH 221 and one of the following courses: BAE 560, CE 563, BIOL 529, BIOL 612, ATM 661.
Rationale:	Taught on demand fall semester of odd years.
Impact:	No impact to other departments.
Effective Date:	Fall 2015

Credit:	3
Pre-requisite:	NA
To:	BAE 865. Advanced Ecological Engineering Design. (3). \textit{I, in odd years}. Advanced study of ecological engineering, systems and processes. Three hours recitation a week. Not available for students with credit for BAE 665.
Credit:	3
Pre-requisite:	NA
Rationale:	Taught on demand fall semester of odd years.
Impact:	No impact to other departments.
Effective Date:	Fall 2015
Expedited Curriculum Changes

Chemical Engineering

From:

Bachelor degree requirements

Freshman year

Fall semester (15 credit hours)

- Humanities/social science elective Credits: (3)
- CHE 015 - Engineering Assembly Credits: (0)
- CHE 110 - Current Topics in Chemical Engineering Credits: (1)
- CHM 210 - Chemistry I Credits: (4)**
- ENGL 100 - Expository Writing I Credits: (3)
- MATH 220 - Analytic Geometry and Calculus I Credits: (4)

Spring semester (16 credit hours)

- Humanities/social science elective Credits: (3)
- CHE 015 - Engineering Assembly Credits: (0)
- CHM 230 - Chemistry II Credits: (4)**
- COMM 105 - Public Speaking IA Credits: (2)
- ECON 110 - Principles of Macroeconomics Credits: (3)
- MATH 221 - Analytic Geometry and Calculus II Credits: (4)

Sophomore year

Fall semester (16 credit hours)

- CHE 015 - Engineering Assembly Credits: (0)
- CHE 320 - Chemical Process Analysis Credits: (3)
- CHM 371 - Chemical Analysis Credits: (4)†
- MATH 222 - Analytic Geometry and Calculus III Credits: (4)
- PHYS 213 - Engineering Physics I Credits: (5)

Spring semester (17 credit hours)

- CHE 015 - Engineering Assembly Credits: (0)
- CHE 416 - Computational Techniques in Chemical Engineering Credits: (3)

To:

Bachelor degree requirements

Freshman year

Fall semester (15 credit hours)

- Humanities/social science elective Credits: (3)
- CHE 015 - Engineering Assembly Credits: (0)
- CHE 110 - Current Topics in Chemical Engineering Credits: (1)
- CHM 210 - Chemistry I Credits: (4)**
- ENGL 100 - Expository Writing I Credits: (3)
- MATH 220 - Analytic Geometry and Calculus I Credits: (4)

Spring semester (16 credit hours)

- Humanities/social science elective Credits: (3)
- CHE 015 - Engineering Assembly Credits: (0)
- CHM 230 - Chemistry II Credits: (4)**
- COMM 105 - Public Speaking IA Credits: (2)
- ECON 110 - Principles of Macroeconomics Credits: (3)
- MATH 221 - Analytic Geometry and Calculus II Credits: (4)

Sophomore year

Fall semester (16 credit hours)

- CHE 015 - Engineering Assembly Credits: (0)
- CHE 320 - Chemical Process Analysis Credits: (3)
- CHM 371 - Chemical Analysis Credits: (4)†
- MATH 222 - Analytic Geometry and Calculus III Credits: (4)
- PHYS 213 - Engineering Physics I Credits: (5)

Spring semester (17 credit hours)

- CHE 015 - Engineering Assembly Credits: (0)
- CHE 416 - Computational Techniques in Chemical Engineering Credits: (3)
<table>
<thead>
<tr>
<th>Junior year</th>
<th>Junior year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall semester (17 credit hours)</td>
<td>Fall semester (17 credit hours)</td>
</tr>
<tr>
<td>• Chemistry/biochemistry/biology elective‡ Credits: (3)</td>
<td>• Chemistry/biochemistry/biology elective‡ Credits: (3)</td>
</tr>
<tr>
<td>• Advanced laboratory experience§ Credits: (2)</td>
<td>• Advanced laboratory experience§ Credits: (2)</td>
</tr>
<tr>
<td>• Humanities/social science elective Credits: (3)</td>
<td>• Humanities/social science elective Credits: (3)</td>
</tr>
<tr>
<td>• CHE 015 - Engineering Assembly Credits: (0)</td>
<td>• CHE 015 - Engineering Assembly Credits: (0)</td>
</tr>
<tr>
<td>• *CHE 521 - Chemical Engineering Thermodynamics II Credits: (3)</td>
<td>• *CHE 521 - Chemical Engineering Thermodynamics II Credits: (3)</td>
</tr>
<tr>
<td>• *CHE 530 - Transport Phenomena I Credits: (3)</td>
<td>• *CHE 530 - Transport Phenomena I Credits: (3)</td>
</tr>
<tr>
<td>• ENGL 415 - Written Communication for Engineers Credits: (3)</td>
<td>• ENGL 415 - Written Communication for Engineers Credits: (3)</td>
</tr>
<tr>
<td>Spring semester (14 credit hours)</td>
<td>Spring semester (14 credit hours)</td>
</tr>
<tr>
<td>• Chemistry/biochemistry/biology elective‡ Credits: (3)</td>
<td>• Chemistry/biochemistry/biology elective‡ Credits: (3)</td>
</tr>
<tr>
<td>• Technical elective Credits: (3)</td>
<td>• Technical elective Credits: (3)</td>
</tr>
<tr>
<td>• CHE 015 - Engineering Assembly Credits: (0)</td>
<td>• CHE 015 - Engineering Assembly Credits: (0)</td>
</tr>
<tr>
<td>• *CHE 531 - Transport Phenomena II Credits: (3)</td>
<td>• *CHE 531 - Transport Phenomena II Credits: (3)</td>
</tr>
<tr>
<td>• *CHE 535 - Transport Phenomena Laboratory Credits: (3)</td>
<td>• *CHE 535 - Transport Phenomena Laboratory Credits: (3)</td>
</tr>
<tr>
<td>• CHE 354 – Basic Concepts in Materials and Engineering Credits: (1)</td>
<td>• CHE 354 – Basic Concepts in Materials and Engineering Credits: (1)</td>
</tr>
<tr>
<td>• CHE 355 – Fundamentals of Mechanical Properties Credits: (1)</td>
<td>• CHE 355 – Fundamentals of Mechanical Properties Credits: (1)</td>
</tr>
<tr>
<td>or CHE 356 – Fundamentals of Electrical Properties Credits: (1)</td>
<td>or CHE 356 – Fundamentals of Electrical Properties Credits: (1)</td>
</tr>
<tr>
<td>Senior year</td>
<td>Senior year</td>
</tr>
<tr>
<td>Fall semester (18 credit hours)</td>
<td>Fall semester (18 credit hours)</td>
</tr>
<tr>
<td>• Technical elective Credits: (3)</td>
<td>• Technical elective Credits: (3)</td>
</tr>
<tr>
<td>• UGE ≥ 300 level humanities and social science elective Credits: (6)</td>
<td>• UGE ≥ 300 level humanities and social science elective Credits: (6)</td>
</tr>
<tr>
<td>• CHE 015 - Engineering Assembly Credits: (0)</td>
<td>• CHE 015 - Engineering Assembly Credits: (0)</td>
</tr>
<tr>
<td>• *CHE 550 - Chemical Reaction Engineering Credits: (3)</td>
<td>• *CHE 550 - Chemical Reaction Engineering Credits: (3)</td>
</tr>
<tr>
<td>• *CHE 560 - Separational Process Design Credits: (3)</td>
<td>• *CHE 560 - Separational Process Design Credits: (3)</td>
</tr>
<tr>
<td>• *CHE 570 - Chemical Engineering Systems Design I Credits: (3)</td>
<td>• *CHE 570 - Chemical Engineering Systems Design I Credits: (3)</td>
</tr>
<tr>
<td>Spring semester (16 credit hours)</td>
<td>Spring semester (16 credit hours)</td>
</tr>
</tbody>
</table>
• Chemical engineering elective Credits: (3)
• Unrestricted elective Credits: (3)
• CHE 015 - Engineering Assembly Credits: (0)
• CHE 542 - Unit Operations Laboratory Credits: (3)
• CHE 561 - Chemical Process Dynamics and Control Credits: (3)
• CHE 571 - Chemical Engineering Systems Design II Credits: (3)
• CHE 565 – Health and Safety in Chemical Engineering Systems (1)

Notes

* These courses form the chemical engineering core program.

** Chemical Principles I (CHM 220) and Chemical Principles II (CHM 250) may be taken instead of CHM 210, CHM 230, and CHM 371. If this option is elected, two additional credit hours of technical electives are to be selected.

Chemistry/biochemistry/biology electives must include either Physical Chemistry I (CHM 585) or Physical Chemistry II (CHM 595). In addition, possible selections in each department for electives include the following.
Chemistry: Organic Chemistry II (CHM 585), Instrumental Analysis (CHM 566), and General Biochemistry (CHM 595).
Biochemistry: General Biochemistry (BIOL 521), Physical Studies of Biomacromolecules (BIOL 590), and Biochemistry I (BIOL 522), and Biochemistry II (BIOL 523); Biology: BIOL 450 or above; some possible courses include Modern Genetics (BIOL 450), General Microbiology (BIOL 455), Plant Physiology (BIOL 500), Fundamentals of Ecology (BIOL 529) or Cell Biology (BIOL 541).

§ The advanced laboratory experience is to be a 2-credit-hour laboratory course selected from the following courses: Organic Chemistry Laboratory (CHM 532), Physical Methods Laboratory (CHM 596), General Biochemistry Laboratory (BIOL 522), or Biochemistry I Laboratory (BIOL 526).

The departmental requirements below must be satisfied.

32 credit hours of electives are required, and they are to be selected in consultation with the student’s advisor. All electives must be on the lists approved by the department or have the approval of the department head and must support the program educational objectives and student.
outcomes of the chemical engineering program. A student’s overall program of study must meet university general education (K-State 8) criteria; both the required and elective components can contribute to satisfying the K-State 8 criteria. 14 credit hours of technical electives are required. These electives must include one chemistry/biochemistry/biology (3 credit hours) course, an advanced laboratory experience (2 credit hours), and a chemical engineering elective (3 credit hours).

The remaining 6 credit hours of technical electives are to be chosen from courses identified as engineering topics, with at least one course selected from either analytical mechanics (both statics and dynamics must be represented) or circuits, fields, and electronics.

- 15 credit hours of social sciences and humanities electives are required. These courses are to be selected from the list approved by the College of Engineering. At least 6 credit hours of 300-level or higher courses must be included within these 15 credit hours. All courses must be taken for a letter grade.

- Three (3) credit hours of unrestricted elective are to be selected from courses numbered 100 or higher, excluding courses listed as a prerequisite to a required course.

A grade of C or higher in each course within the chemical engineering core program is required for graduation.

Total hours required for graduation (129)

Effective term: Fall 2014

Rationale: In recent years students have transferred into our program who have completed significant amounts of chemical engineering coursework from another institution. It would be possible for such students to graduate with a degree in chemical engineering from Kansas State University while only completing a minimal number of courses within our department. We desire to have our graduates have their chemical engineering education be truly representative of that provided by our faculty. Thus we want to establish the amount of discipline specific coursework that must be completed at Kansas State in order to obtain a chemical engineering degree.
Impact (i.e. if this impacts another unit): None