Posters
Shawnee A


    P2

STRUCTURE AND POTENTIAL ROLE OF ATMOSPHERIC NANOPARTICLES IN PHOTOCATALYTIC AND THERMAL PRODUCTION OF ATMOSPHERIC POLLUTANTS

 
M.J. Yacaman, Instituto Nacional de Investigaciones Nucleares, Instituto de Fisica, Universidad Nacional Autonoma de Mexico. R.R. Chianelli, Chemistry Department, University of Texas at El Paso 79968, (915) 747-7555. Atmospheric aerosols which occur above heavily polluted areas such as Mexico City are characterized and found to be complex materials which have the potential to accelerate important ozone-forming reactions photocatalytically and thermocatalytically. In addition, because the particles are respirable, they represent a considerable health hazard.

The aerosols consist of two intermixed components. The first component is an amorphous carbonaceous material of variable composition with "fullerene like" materials dispersed throughout. The second component is an inorganic material consisting of nanoparticles of oxides and sulfides "supported" on clay minerals. This inorganic component has all of the characteristics of an airborne photocatalyst. Nanoparticles of Fe203, MnO2, and FeS2 have demonstrated catalytic properties, particularly when occurring in the nanoparticle range as they do in aerosol materials.

These materials have band-gaps which occur in the broad solar spectrum enhancing the photocatalytic adsorption of solar radiation beyond that of the wider band-gap aluminosilicate and titanate materials which also occur in the aerosols. In addition, the materials are acidic and probably are coated with moisture when suspended in air, further enhancing their catalytic ability to crack hydrocarbons and create free radicals.

Key words: nanoparticles, photocatalysis, aerosols



Top of Page


Return to Main Table of Contents
(to see full list of programs and abstracts)


Sub-Menu of Event Programs
(to see specific list of abstracts)


Tuesday, May 20, 1997

Metals Kansa A

Remediation of Munitions Compounds Kansa B

Analytical Methods Kansa C/D

General Topics Kansa B


Wednesday, May 21, 1997

Metals Kansa A

Zero-Valent Metals Kansa A

Remediation Kansa A

Vegetation-based Remediation Kansa B

Partnerships & Innovative Technologies Kansa C/D

Nonaqueous Phase Liquids Kansa C/D


Thursday, May 22, 1997

Biofilms & Barriers Kansa A

Bioremediation Kansa B

Partnerships & Technology Innovations Kansa C/D

Remediation Kansa C/D


Posters



Return to Publications Menu

[INDEX]

Send comments on the Great Plains/Rocky Mountain HSRC web pages to: hsrc@engg.ksu.edu;
comments or questions about this WWW server, to: www@engg.ksu.edu.