X. Zhang, S. Banerji, and R. Bajpai, Department of Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, Phone: 573-882-3708, FAX: 573-884-4940

ABSTRACT Complete mineralization of chlorinated solvents by microbial action has been demonstrated under aerobic as well as anaerobic conditions. In most of the cases, it is believed that the biodegradation is initiated by broad-specificity enzymes involved in metabolism of a primary substrate. Under aerobic conditions, some of the primary carbon and energy substrates are methane, propane, toluene, phenol, and ammonia; under anaerobic conditions, glucose, sucrose, acetate, propionate, isopropanol, methanol, and even natural organics act as the carbon source. Published biochemical studies suggest that the limiting step is often the initial part of the biodegradation pathway within the microbial system. For aerobic systems, the limiting step is thought to be the reaction catalyzed by mono- and dioxygenases which are induced by most primary substrates, although some constitutive strains have been reported. Other critical features of the biodegradative pathway include: 1) activity losses of critical enzyme(s) through the action of metabolic byproducts, 2) energetic needs of contaminant biodegradation which must be met by catabolism of the primary substrates, 3) changes in metabolic patterns in mixed cultures found in nature depending on the availability of electron acceptors, and 4) the associated accumulation and disappearance of metabolic intermediates. Often, the contaminant pool itself consists of several chlorinated solvents with separate and interactive biochemical needs. The existing models address some of the issues mentioned above. However, their ability to successfully predict biological fate of chlorinated solvents in nature is severely limited due to the existing mathematical models. Limiting step(s), inactivation of critical enzymes, recovery action, energetics, and a framework for multiple degradative pathways will be presented as a comprehensive model.

KEYWORDS: bioremediation, enzyme kinetics, electron acceptors, metabolism

This paper is from the Proceedings of the HSRC/WERC Joint Conference on the Environment, May 1996, published in hard copy and on the Web by the Great Plains/Rocky Mountain Hazardous Substance Research Center.

To view the entire paper, you must haveAdobe Acrobat Reader. Click here to download Acrobat.

Click here to download the paper. (70 k)

Send comments on the Great Plains/Rocky Mountain HSRC web pages to:; comments or questions about this WWW server, to: