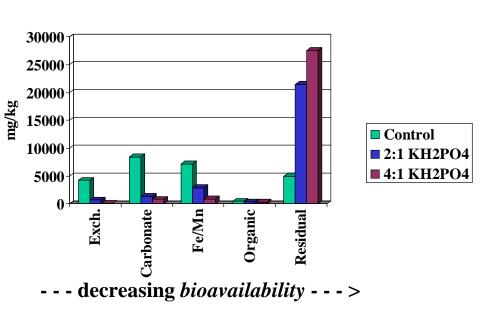


Heavy Metal Stabilization in Soil

Great Plains - Rocky Mountain
Hazardous Substance Research Center

Soil Heavy Metal Stabilization

Excavation and removal



- .Traditional remediation method
- .Most expensive option
- .Most environmentally disruptive
- Long-term waste storage problem

Removal of lead-contaminated soil in Joplin, Missouri (photo courtesy G. Pierzynski, KSU).

Soil Heavy Metal Stabilization (con't.)

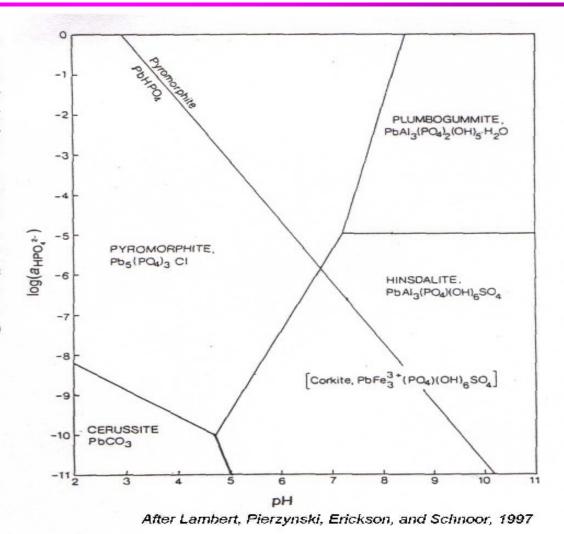
In Situ fixation

Lead content in mg/kg (parts per million) of smelter slag from Dearing, Kansas, after 24 weeks of incubation with phosphate amendments. *From* Lambert, *et al.*, 1998.

Treats contaminated soil in place.

Benefit: much less disruptive and less expensive

.Goal: make heavy metals less bioavailable thru use of soil amendments..


.Disadvantage: a new technology with uncertain public response.

Solubility Products of Selected Heavy Metal Minerals

MINERAL	CHEMICAL FORMULA	LOG Ksp
Cerrusite	PbCO ₃	-12.8
Fluoropyromorph.	Pb ₅ (PO ₄) ₃ F	-76.8
Hydroxypyromor.	Pb ₅ (PO ₄) ₃ OH	-82.3
Chloropyromorp.	Pb _s (PO ₄) ₃ Cl	-84.4
Hinsdalite	PbAI ₃ (PO ₄)(OH) ₆ SO ₄	-99.1
Plumbogummite	PbAI ₃ (PO ₄₎₂ (OH) ₅ H ₂ O	-99.3
Corkite	PbFe ³ (PO ₄)(OH) _s SO ₄	-112.6

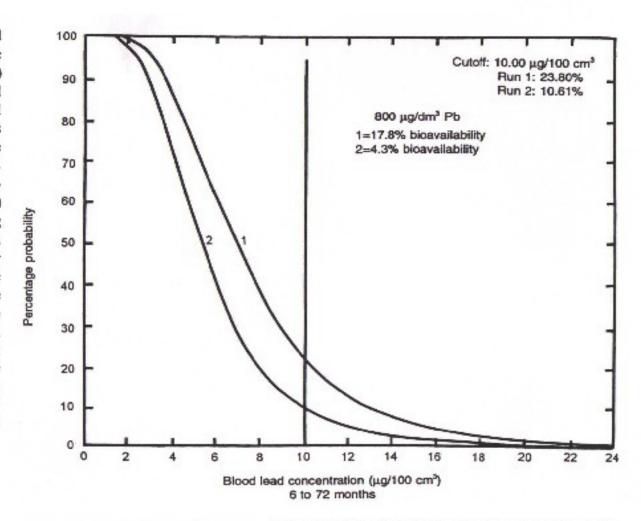

Diagram Showing the Stability of Lead Minerals in Soil

Figure 1 Stability fields of lead minerals in soils. Ionic activity constraints are: activity of SO_4^{2-} = activity of $HCO_3^- = 10^{-3}$; activity of $Al^{3+} = 10^{-6}$; and activity of $Pb^{2+} = 10^{-6}$. Minerals with similar compositions and stabilities, such as hinsdalite and corkite, occupy the same stability field. Chloropyromorphite [Pbs(POa)3CI] has the largest stability field. (Adapted from Nriagu²⁰)

Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Soil

Figure 6 An Integrated Exposure Uptake Biokinetic (IEUBK) model output for a soil with 800 mg kg-1 soil lead. Two different levels of bioavailability are assumed: 17.8% (corresponding to no phosphate remediation) and 4.3% (corresponding to phosphate stabilization of soil lead). All other model parameters are default values. Phosphate remediation under these conditions results in a decrease of children with blood lead levels above EPA guidelines from 23.80% to 10.61% of the children.

Soil Heavy Metal Stabilization (con't.)

Phytoremediation

Phytostabilization of mine spoils (*chat*) in Galena, Kansas. Without revegetation, wind and rain can spread heavy metals beyond initial site of contamination. *From* Lambert, *et al.*, 1999).

.Phytostabilization (revegetation) of heavy metal - contaminated land.

.Phytoextraction (sequestration) of heavy metals by plants.

Benefit: Low cost and environmentally friendly.

Disadvantage: length of time for remediation; disposal of harvested heavy metal biowaste.

Comparative Costs for Different Types of Heavy Metal Soil Stabilization

Type of Stabilization	Cost / cu. m	Time Required (months)
Excavation and removal	\$100 - \$400	6 - 9 months
In Situ fixation	\$90 - \$200	6 - 9 months
Phytoextraction	\$15 - \$40	18 - 60 months

From Schnoor, 1997

Other Heavy Metal Soil Stabilization Techniques

- PHYTOVOLATILIZATION
- MICROBIAL BIOREMEDIATION
- EXTRACTION OF HEAVY METALS

Research Supported by Great Plains - Rocky Mountain Hazardous Substance Research Center

(http://www.engg.ksu.edu/HSRC/research.html)

- METALS RESEARCH
- DETECTION AND REMEDIAL RESEARCH
- BIOREMEDIATION RESEARCH
- FATE & TRANSPORT